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1. Introduction

In a recent publication, Yeh (1991) discusses the mech-
anism of vorticity generation in a steady-flow hydraulic
jump. Three contributions are identified: Viscous shear at
the interface between the two fluids, the baroclinic torque
brought about by the static pressure gradient in the up-
per fluid, and the baroclinic torque brought about by the
dynamic pressure gradient associated with a suitable ve-
locity field in the upper fluid. The last of these is shown to
dominate the other two and is proportional to the density
ratio. It requires the vertical component of the pressure
gradient in the upper fluid to be of opposite sign to that
corresponding to the static gradient, so that a significant
velocity field with prescribed features has to be present in
the upper fluid. Since this velocity field will depend on
whether the far-field upper fluid is at rest relative to the
wave or relative to the upstream lower fluid, the vorticity
generation would be different in these two cases. When
the density ratio is very large, such as for an air/water
interface, where it is approximately 1000, such a depen-
dence on the motion of the tenuous upper fluid seems too
sensitive. One might carry the argument to the extreme
case of a mercury vapour/liquid interface, and ask whether
the vapour motion would be able to influence the vorticity
downstream of a hydraulic junp in the liquid. In that case
the density ratio is O(107), and it is hard to believe that
the dimensionless vorticity would he 10000 times as large
inn the mercury case than in the water /air case at the same
Froude number.

The present investigation was motivated by the dissat-
isfaction experienced by the author with this result. The
fact that the momentum vector of the fluid entering the
Jump and the momentum vector of the fuid leaving it are
not collinear, stimulated the application of the conserva-
tion of angular momentum to a control volume surround-
ing the jump. In this mauner it was hoped that, just as in
the classical derivation of the jump conditions, the omis-
sion of the conservation of wechanieal energy would allow
unresolved dissipative processes in the control volume to
occur, and yet permit the jump conditions and the wmean
downstreain vorticity to be determined.

The aim of this work is thus to consider a steady-How
hydraulic junp in a constant-density fluid on a horizon-
tal, frictionless, solid surface, when the fluid has a density
very much larger than that of the overlying Huid, so that
the pressure at the free swrface may be considered to be
uniform, with a view to determining the mean vorticity
downstream of the jump by the application of the conser-
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vation of angular momentum. This approach leaves the
mechanism of vorticity generation unspecified,

2.  The classical jump conditions.

The classical equations connecting the conditions up-
stream and downstream of a hydraulic jump are derived
from a consideration of the conservation of mass and mo-
mentum in a control volume reaching to regions upstream
and downstream where the flow is considered to be uni-
form. This derivation is repeated here as a form of in-
troduction of the variables of the problem. Fig. 1 shows
the control volume of the classical situation, with uniform
velocity profiles upstream and downstream of the jump.
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Fig. 1 Schematic sketeh of hydraulic jump with control
volume.

In terms of the quantities defined by Fig. 1, the con-
servation of mass across the jump is ensured, if
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Similatly, the conservation of momentum requires (in the
absence of friction on the bottom) that
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or, manipulating this by using (1),

ha® (
= [ L
=

Now introduce the definitions of the Froude nunber F:
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in order to rewrite equation (2) in the form
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It is useful to note here that, in the limit

F—1, H—1,
and in the limit

F — oo, H— V2F.

3.  Jump conditions with downstream vorticity

We now anticipate that the velocity profile downstream
of the jump will be rotational and give it not only a mean
velocity U, but in addition a mean vorticity w. Thus the
velocity distribution on the downstream side of the jump
is now assumed to be

ha
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where y is the distance from the horizontal solid bottom,
measured vertically upward.

This change does not affect the mass balance, but the
momentum balance has to be modified. It now requires
that
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Substituting this back info the momentum balance and
writing the new result in the dimensionless variables, we
obtain the new relation
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The difference hetween the previous result, equation (5)
and this is that a new term in  appears on the right. Q
1s of course not known uuntil a new condition is applied.
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Fig. 2 Schematic sketeh of hydraulie jump for the case
with finite mean vorticity downstream
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The appropriate new condition is the conservation of
angular momentum, which demands that the torque ap-
plied to the control volume by external forces be equal to
the rate of change of the angular momentum of the fluid
contained in it. The procedure is considerably more com-
plex than in the conservation of linear momentum, because
in the latter, only the streamwise component needs to be
considered, so that the force on the bottom (in the ab-
sence of friction) and body forces are not needed. In order
to simplify the process, we consider the case naively first,
by neglecting the vertical inertial forces, i.e. by assuming
that the pressure distribution on the bottom exactly bal-
ances the weight of the fluid. This eliminates the vertical
forces from the consideration again.

Taking moments about a point in the bottom surface
(to aid the thinking, one might choose the centre of pres-
sure, so that, with the above assumption, the weight and
bottom pressure force do not contribute) the angular mo-
mentum balance yields
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It is important to realize that the point about which one
takes moments does not affect the result. This is because
the linear momentuin is balanced separately, and the terms
introduced by a change in the fulerum are zero by virtue of
the linear momentum balance. Rewriting the above equa-
tion with a linear velocity profile (equation (6)), using the
continuity equation (1), and performing the integration, a
quadratic equation results:
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The only physically interesting solution of this equation is
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To checl this result, consider what it does in the limiting
cases of F — 1 and F — 0. As F - 1, H — F, so
that £ — 0, which is intuitively appealing. However, at
F' 2 1.3 the radicand changes sign, so that, for greater F,
equation (11) gives a physically meaningless result.

4.  The torque from the bottom pressure

Something must therefore be wrong in the derivation
of (11). It is necessary to include the torque exerted on
the fluid by the vertical forces in the conservation of an-
gular momentum. If the vertical component of the inertial
forces were zero, the bottom pressure would exactly bal-
ance the weight of the fluid, so that no net torque would
be acting on the fluid because of the vertical force com-
ponents. In the left half of the control volume there is
a mean eoncave-up streamline curvature. To provide this
curvature a transverse pressure gradient is required. Since
the pressure at the free swrface is independent of stream-
wise distance (assuming the density of the overlying fluid
to be negligible) the pressure on the bottom must exceed
the static pressure corresponding to the height of liquid
above it. The opposite situation occurs in the downstream
half of the control volume, where the mean streamline cur-



vature is convex up, so that the bottom pressure is lower
than it would be without this inertial force,

The additional bottom pressure distribution brought
about by the vertical acceleration of the fluid is thus anti-
symmetric, and will exert a clockwise torque on the fluid.
This also has the required feature that it disappears at
F — 1, since the mean streamline curvature disappears,
and increases as F' increases. Unfortunately, it is not pos-
sible to obtain it without some further assumptions. Let
this torque be ¢ per unit lateral distance and introduce the
dimensionless torque
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In order to study it in some detail, consider the dif-
ferential form of the continuity and vertical mementum
equations:
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where the symbols have their usual meaning. By using

the continuity equation to replace g—; in the momentum

equation, and replacing p with the excess pressure p' over
the static pressure according to
|
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the momentum equation becomes
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At the free surface,
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a linear profile satisfying the bottom condition v(z,0) = 0.
Substituting these in equation (12), we obtain
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This may be integrated over y from 0 to & to give the excess
bottomn pressure:
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Consequently the clockwise torque per unit transverse dis-
tance exerted by the excess hottom pressure on the Huid
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In order to show Liow the exeess pressure behaves, Fig. 3
shows this as a function of dimensionless distance for the
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case of a hyperbolic-tangent wave shape.
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Fig. 3 The behaviour of the excess pressure (scaled by
(H—1)/2) for a hyperbolic-tangent wave shape and
values of H — 1 = 0.01, 0.03, 0.1, 0.3, 1, 3, 10, and
30. In this representation the largest amplitude

corresponds to the smallest value of H.

However, it is in fact not necessary to assume a partie-
ular wave shape, because (13) may be integrated by parts
to give
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To the approximation made here, the torque from the ex-
cess bottom pressure is thus independent of the detail of
the wave shape. This may be expected to be correct for
small values of H, but care needs to be exercised at larger
H. This is because the assumptions made earlier about
the forms of u(z,y) and v(x,y) break down as H — co.

One cause of this failure is evident from a consideration
of the situation when the spill of the wave forms the roller
that is observed at large H m a hydraulic jump. Clearly,
the assumptions of uniform « over y and linear v over y
fail i this case.

It is important to check that the excess bottonm pres-
sure dooes not produce a net force. This may easily be done
by integrating the pressure distribution over x. The result
15
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which is zero.

5. The effect of the bottom pressure torque

Substituting the term introduced by ¢ into the equation
for angular momentun balance (10) as a correction, we
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Solving for 2,
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Fig. 4 The wave height in the form H — 1 and the down-
stream vorticity {2 as functions of the Froude num-
ber (F'—1) as given by simultaneous solution of (9)
and (17).
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Q(F) and H(F) may now be obtained by solving (9) and
(17) simultaneously. The result is plotted in Fig. 4.
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The behaviour of  in the limits F — co and F — 1
contain the most interesting features of our results. At
F —1 — 0 series solutions may easily be obtained for F—1
and ) in increasing powers of ¢ = H — 1. The result is
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Thus the vorticity increases from zero as
2 3 4
Q=§(F71) + O(F —=1)".

This is reminiscent of the wmanner in which dissipative ef-
fects behave in the analogous situation of a shock wave in
a compressible fluid. The square of the Mach number M?
corresponds to the Froude number F in the analogy and
dissipative effects manifest themselves in the form of an
entropy increase in the shock wave. This entropy change
increases with the cube of M? — 1, just as the manifesta-
tion of dissipative cffects in the hydraulic jump (namely
vorticity) increases as the cube of F — 1 here.

At the other extreme, the present solutions are not
able to make a satisfactory prediction, because the ap-
proximations leading to the expression for the torque from
the bottom pressure brealk down. However, it is possible
to make an intelligent guess about the behaviour of the
radicand of equation (17). The trend of this radicand is
to decrease towards zero at F' = 9.5 (see Fig. 4). It must
not change sign, however, if the solution is to remain real.
We expect, therefore, that the physical case corresponds
to the radicand approaching zero smoothly as F — co. If
this is correct, £ will approach the value 2 asymptotically.
This is also the maximum value that can be reaclied, be-
causc it corresponds to U{h) 0. Lavger values of € im-
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ply negative U(hs), which does not make sense, because it
correspends to the downstream fluid overtaking the wave.

The value of £ at F' — co may be approximately as-
sessed from the experimental evidence that a surfboard or
other floating object is carried along almost at the same
speed with a large broken wave even if it is just down-
stream of the wave. This indicates that, provided that the
downstream velocity profile is approximately linear in y,
the value of Q2 at large F is less than, but nearly equal to
2. This lends additional support to our guess.

6. Conclusions

The exercise of applying the conservation of angular
momentum to a control volume around a hydraulic jump
with no friction on the horizontal bottom surface, yielded
the following interesting results.

1. A solution was found for the mean vorticity down-
streamn of the hydraulic jump which increases as the
cube of F — 1 as the Froude number F increases
from 1, and tends to a constant dimensionless value
(=2) as F' — oo. The presence of the downstream
vorticity reduces the hicight ratio slightly at large
Froude number.

2. The vorticity is I'mited by the torque exerted on
the control volume by the excess bottom pressure
that arises from the vertical acceleration of the lig-
uid. A closed-form solution was obtained for this
torque which is independent of the wave shape and
depends only on the height ratio.

3. While this argument does not provide the mech-
anism by which the vorticity is generated, it can
give the rate of production by requiring that angu-
lar momentum is produced at a rate equal to the
externally applied torque.

Vorticity generation is always related to dissipative pro-
cesses, and in the case of the hydraulic jump, it is clearly
connected with the fact that mechanical energy is not con-
served in the jump. If it is assumed that the flow is
steady and frictionless, as has been done here, no mech-
anism (other than the steady-flow baroclinic mechanism
proposed by Yel) is therefore provided by which vortic-
ity may be generated. By involing only the conservation
of mass, momentum and angular momentum, and not the
conservation of encrgy, it is possible, however, to obtain &
solution to the problem, just as one does in the classical
derivation of equation (5) without resolving the detailed
mechanism of vorticity generation. Since the most impor-
tant dissipative processes involved in the hydraulic jump
are conuected with the unsteadiness of the free surface,
it may be concluded that the baroclinic torque associated
with nonuniformly accelerated free surfaces is primarily re-
sponsible for the detailed vorticity generation.
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