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ABSTRACT

The large-amplitude motion of an elastically mounted
cylinder under combinations of oscillatory flow and a mean
current shows complex behaviour. This paper parameterises
the vortex forcing in a dynamic simulation based on the
Morison equation. It is concluded that the motions observed
in these experiments can be described by limit cycle rather
than chaotic behaviour.

1. INTRODUCTION

This study examines the dynamics of an elastically
mounted cylinder subject to oscillation loading. This has
widespread practical application in the analysis and design
of such systems as offshore structures, undersea pipelines,
cables, piles and risers. Present theory can predict only to a
very limited extent the response of structures subjected to
oscillatory loading.

The main deficiency in the present theory is an
understanding of the nature of vortex induced forces on the
structure. These forces arc often substantial and strongly
determinative of the overall dynamics. With a view to
gaining further insight into the nature of these vortex forces,
and structural response to wave motion in general, an
experimental rig has been constructed at Monash University
(Reid and Hinwood, 1987).

This rig can subject the elastically mounted cylinder to
an harmonic oscillation and a current. The cylinder is
aligned perpendicular to the flow, and the flow
characteristics are approximately uniform along the axis of
the cylinder. Thus, a two dimensional analysis of the motion
is appropriate.

Initial experiments performed on this apparatus
revealed many interesting and complex behaviours. The
path  of the cylinder motion was recorded, and it was
thought that it may exhibit chaotic behaviour (Thompson et
al., 1984; Fenton et al, 1991). Prior to the present
investigation, no substantial analysis was performed on the
experimental results,

This study secks to gain an understanding of the
dynamics through numerical analysis of the experimental
data. The vortex forces shall be isolated, analysed and a
phenomenological model for vortex drag proposed. The
question of chaotic dynamics shall be considered.

2. THEORETICAL BACKGROUND

The present analysis is based on the Morison equation
for wave induced forces. Inclusion of vortex induced forces
adds terms to the Morison forces. The resultant equations of
motion of the cylinder in the x and y directions are
respectively:
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where M is the cylinder mass, p is the fluid density, V is the
cylinder volume, C is the structural damping, K is the
structural stiffness, A is the projected area of the cylinder,
D, is the vortex induced drag, L, is the vortex induced lift, «
is the water velocity, x and y are the cylinder position
coordinates, and dash denotes differentiation with respect to
time., The inertia coefficient C,» and the drag coefficient
C, were determined from Hinwood and Chandler (1991).

Vortices shed from a rigid cylinder in a uniform
current have a speed of circulation proportional to the
current speed and a frequency of shedding given by a
Strouhal number:
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The vortex-induced lift force in general has been
found to have a frequency f, while the in-line vortex-induced
force has a frequency of 2f. The vortex-induced force,
caused by the circulation around the cylinder following the
shedding of a vortex, is proportional to the circulation and to
the ambient velocity.

Similar results have been found for vortex shedding in
oscillatory flow, with the frequency now found from the
Keulegan-Carpenter number (Obasaju et al., 1988). The
magnitude of the forces should increase with the current, and
lag it, since the circulation is proportional to the velocity
during formation of the vortex (Chandler and Hinwood,




1985). Fenton et al. (1991) used three term Fourier series in
equations (1) and (2) to represent the vortex forcing and
predicted limit cycle behaviour, except for the case of
nonlinear stiffness. This technique gave a rough agreement
with their experimental observations.

A chaotic system is a deterministic system that
becomes unpredictable due to its intrinsic dynamics, rather
than outside influences. A system must have coupled
nonlinear terms and have at least three independent
dynamical variables to exhibit chaos (Baker and Gollub,
1990). This system has four independent variables and
contains coupled nonlinearities. It thus has the potential to
exhibit chaos.

Dynamic systems exhibiting chaos have fractal phase
trajectories (strange attractors). A common route to chaos is
via a sequence of period doublings as a system parameter is
varied. A chaotic system typically exhibits a broad band
power spectrum and sensitive dependence on initial
conditions.

3. EXPERIMENTAL APPARATUS

The cylinder used in the experiments is elastically
supported by beryllium copper cantilevers connected to the
cylinder via teflon sliders and universal joints. The
cantilevers are of circular cross-section. This ensures that
the cylinder has equal stiffness in all directions. The sliders
eliminate any potential geometric nonlinearities. Support
stiffness may be altered by changing the length of the
cantilevers. The cylinder is smooth, 0.5m long, and has a
diameter of 25.4mm and is fitted with endplates of three
times this diameter. It is neutrally buoyant, and hence has a
mass of 0.25kg.

The apparatus in which the cylinder is submerged
consists of a U-tube in which oscillations are generated by a
loose fitting plunger. A current may be superposed on the
flow by pumping water through a return pipe and the
working section of the tube. For this series of experiments,
the oscillation frequency was set at 0.44Hz.

4. EXPERIMENTAL WORK
4.1. Scope

The series of experiments previously reported by
Fenton et al. were conducted as follows. The cylinder was
first excited by oscillation action alone (zero current). The
oscillation amplitude was 0.12m/s. The remaining
experiments were conducted with both oscillations and a
current. The oscillation amplitude was fixed at 0.09m/s.
The values of current used were 0.11, 0.12, 0.14, 0.15, 0.16
and 0.17m/s. It is to be noted that for the experiments with
current present, there was no flow reversal, ie. the current
exceeds the oscillation amplitude.

The data extracted from the experiments were the
cartesian position coordinates of the cylinder as time series.
These coordinates were obtained by using a video position
analyser in conjunction with the video recorded during the
experiments. Sampling was conducted at a rate of 25 frames
per second. For each case 512 frames were sampled, giving
approximately 20 seconds of time series.

4.2, Results

Figure 1 displays the trajectories of the cylinder for
currents of 0.11 and 0.17 m/s:

(a)
Figure 1. Trajectory of the cylinder in the U-tube for
currents of (a) 0.11m/s (b) 0.17m/s.

This paper shall focus on results from the experiment
where the current was 0.11m/s; the data from the other
experiments display broadly similar characteristics.

Both position traces exhibit a complex periodic
motion, with interior regions in which the cylinder never
ventures. This is characteristic of all the experiments,
although the shape changes continuously as current is varied.
The principal features of these trajectories are symmetrical
about a horizontal line.

Figure 2 shows the time series of the cylinder position
in each coordinate direction.
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Figure 2. Time series in metres of cylinder motion for
current 0.11m/s (a) x direction (b) y direction. (Arbitrary
origins)

The phase space is four dimensional since there are
two equations of motion, each of second order. Two
dimensional cross sections of the phase space, phase planes,
are shown in figure 3.
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Figure 3. Experimental phase planes. (Arbitrary origins)

Figure 4 shows the vortex forces calculated from
equations of motion (1) and (2), superposed upon the water
velocity for phase comparison.
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Figure 4. Vortex forces in Newtons and water velocity time
series. (a) vortex drag (b) vortex lift. (Arbitrary origins)

Substantiation for the vortex interpretation is provided
firstly by the (crude) agreement between the frequency of the
vortex force and the criteria of section 2. In particular the y
force component had twice the frequency of the x
component.

Secondly, the magnitude variations of the vortex
induced forces are approximately in phase with the water
velocity, with a slight phase lag.

Figure 5 displays the power spectra of the vortex
forces on a linear scale.
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Figure 5. Vortex force power spectra.
(a) vortex drag (b) vortex lift.

All the power spectra are extremely spiked, indicating
a narrow band process. This means that the energy is
confined to specific frequencies and implies that these
frequencies have considerable physical significance.

Consider the forces in the x direction. The spectra for
all cases exhibit two dominant spikes. Both spikes are
always comparable in height and are separated in frequency
by precisely the forcing frequency. This indicates that the
vortex induced drag may be described by a beating
phenomeneon, as in equation (4).
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The sum of two sinusoids, such as those described by
the vortex drag power specira, may be represented by the
product of two sinusoids.

If one sinusoid provides a high frequency of oscillation
and the other provides a low frequency variation of the
amplitude, then an envelope is formed around the high
frequency oscillation. The oscillation amplitude is seen to
‘beat’ (rise and fall) at ¢wice this envelope sinusoid
frequency, as shown in figure 6. Thus, the vortex drag is
exhibiting beating at the frequency of the water oscillation.

Figure 6. Beat frequency is twice
amplitude modulation frequency.
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Since the frequency in the centre of the two spikes
represents the oscillation frequency of the vortex drag force,
this frequency must be closely related to the vortex shedding
frequency. An examination of all the power spectra reveals
that as the current increases, so too does the vortex shedding
frequency. Figure 7 shows the correlation between the
vortex shedding frequency and the forcing current. Equation
(3) provides a crude estimate of this frequency, with the
deviations presumed to be due to the motion of the cylinder.
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Figure 7. Graph of vortex drag oscillation frequency against
forcing current.

5. THEORETICAL WORK

The equations of motion (1) and (2) may be integrated
numerically if functions for the vortex forces are specified.

From the experimental analysis above, the vortex
induced drag is the product of two sinusoids, as in equation
(4). The high frequency is obtained from figure 7, while the
low frequency is that of the water oscillation. The lift force
has not yet been analytically predicted. The simulations
employ an expression with the same spectral properties as
found in the experiments. The magnitudes of the vortex
forces were set equal to the experimentally determined
amplitudes; an analytical expression for the magnitudes is
being sought.

Figure 8 illustrates the simulated x position time
series and x phase plane.
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Figure 8. Computer simulation results. (a) x position time
series in metres (b) x phase plane. (Arbitrary origins)

Comparison of figures 2(a) with 8(a), and 3(a) with
8(b) show that the Morison equation when coupled with a
suitable expression for the vortex forces yields a
topologically accurate solution.

6. IS THE MOTION CHAOTIC?

The experimentally determined phase trajectories and
the computer simulations converge towards a limit cycle
atiractor, not a strange attractor. The requirement of
sensitive dependence on initial conditions is not met as this
convergence occurs for any starting conditions, both in
experiments and simulations.

Although the period of the response may increase as
the current is increased, it appears to do so continuously, not
through period doubling bifurcations. The power spectra of
the motion are very narrow band as shown in figure 5.

Thus this dynamic system is within the regime of
predictability, not chaos, for the range of parameters used.

7. CONCLUSIONS

The phase and amplitude of the vortex induced drag
force are given by the beating of two components, with an
envelope frequency equal to the frequency of the water
oscillation and an oscillation frequency given as an empirical
function of the forcing current.

The composite force expression consisting of vortex
induced forces and the Morison equation has been shown to
describe the dynamics of an elastically mounted cylinder in
oscillatory flow with current.

For the parameter range used, the system is not in a
chaotic regime.
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