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Abstract

Using a steady statc two-dimensional Navicr-Stokes solver the
flow around an acrofoil is computed. The mean velocity pro-
files thus obtained arc used as the basis of a stability analysis
in which the wake is treated as a locally parallel spatially de-
veloping flow. By cxamining the dispcrsion relation between
perturbation wavenumber and frequency, the absolutely and
convectively unstable regions of the flow arc identified. The
frequency sclection eriteria proposed by Koch (1985), Pierre-
humbert (1984) and Monkewitz and Nguyen (1987) are com-
pared with the experimentally observed vortex shedding [re-
quency.

INTRODUCTION

With the availability of modern computers, a number of re-
searchers have studied the stability of fully developed wake
profiles by modeling them with analytic functions, for instance
Sato and Kuriki (1961) and Mattingly and Criminale (1972).
More recently Koch (1985) and Monkewitz and Nguyen (1987)
considered velocity profiles characteristic of the near wake be-
hind a bluff body, investigating them for complex wavenumbers
- spatially growing disturbances.

The wake of a body is continuously devcloping in the
strecamwise direction, so the stability characteristics of the pro-
file at one downstream location will in general be different from
those at another. This leads to the question - which of these
profiles’ stability characteristics determines the vortex shed-
ding {requency in the wake? A number of critcria have been

proposed, notably by Koch (1985), Pierrchumbert (1984) and
Monkewitz and Nguyen (1987).

The understanding of flow instabilitics has been further
advanced with the introduction of the concepts of absolute
and convective instability by Briggs (1964) and Bers (1975),
originally in connection with plasma instabilities. They suggest
that the instability of a flow may be characterised by its responsc
to an impulsc. In particular, il it can be shown that at lcast one
ol the components of the impulse will remain in place and grow
in time, then the How will cventually be dominated everywhere
by the instability.

In this paper vortex shedding from an aerofoil at moderate
incidence and Reynolds number is obscrved in cxperiments,
Figure 1. A finite clement code is used to solve the steady in-
compressible Navier-Stokes cquations for this case, [rom which
the mean velocity profiles necessary for a stability analysis are
obtained. The wake immediately downstream of the acrofoil is
treated as a quasi-parallel spatially developing flow. The stabil-
ity characteristics of the velocity profile at a number of stream-
wisc stations are obtained by treating the velocity profiles as
locally parallcl. At cach of the stations the dispersion relation
for instabilitics with complex {requency and wavenumber are
obtained and the character of the instability determined [rom
the behaviour of the instabilitics with group velocity zero. The
frequency selection criteria proposed by Koch (1985), Picrre-
humbert (1984) and Monkewitz and Nguyen (1987) arc then
compared with the experimentally obtained velocity spectra
[rom the ncar wake of the acroloil.

Figure 1. Vortex shedding from a symmectrical Acrofoil. Regar 15000, incidence 4 deg

985



THEORY

Linear Stability Analysis

Considering the linear stability of an inviscid parallel shear
flow, U(y), to small two dimensional disturbances we treat the
velocity and pressure as having mean and fluctuating compo-
nents. Exploring disturbances in the form of normal modes
yiclds the Rayleigh equation
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Where 4 is the complex modeshape of the fluctuating velocity.
k, ¢ and o represent wavenumber, wave speed and angular
frequency respectively. In this work the quantities U(y), &, ¢
and w have been made dimensionless using aerofoil thickness
and frecstream velocity as appropriate. In the case of a two
dimensional plane wake flow the boundary conditions are those
of vanishingly small disturbances far from the wake,
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Equation 1 with boundary conditions 2 represents an cigenvalue
problem. The method of solution adopted was a shooting
scheme using a Runge-Kutta integration, similar to the one
described in Betchov and Szewezyk (1963).
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Impulse Response Theory

In cxamining the stability characteristics of a locally parallel
velocity profile we adopt the theoretical framework outlined by
Hucrre and Monkewitz (1990). Of principal importance when
considering the stability of a profile is whether it is absolutely or
convecetively unstable. Physically, when impulsively perturbed
an absolutely unstable profile will admit modcs with zero group
velocity at least one of which grows in time. On the other
hand, a convectively (or advectively) unstable profile will admit
growing modes all of which will travel away from the source
ol the disturbance and will eventually leave the original flow
undisturbed. More [ormally, given a velocity profile we can
determine which wavenumbers have a group velocity of zcro,
d“:;,fk) = 0. Il any of these are growing modes then an absolute
instability is present, but the most rapidly growing mode will be
the one for which "‘:’;,E") = 0. Thus the process for determining
the naturc of an instability may be simplificd to determining the
wavenumber kg for which ‘—‘""f:'—‘} = 0 + 04, since this will be the
most amplificd mode with a group velocity of zero. If the valuc
of w associated with this wavenumber has a positive imaginary
part then the mode is growing - and an absolute instability
cxists. Otherwise the instability is convective. In addition it
must be verified that an absolute instability is the result of a
coalescence of an upstream and a downstream traveling mode.

Global Instability

Having determined the local stability characteristics of a spa-
tially developing tlow, we may then want to relatc them to the
global stability characteristics. In the casc of a wake behind an
acroloil, we may ask how does onc particular frequency (the

vortex shedding [requency) come to dominate the response of

the whole region? A number of criteria have been proposed to
account for this frequency sclection. Pierrehumbert (1984) has
suggested that the local mode with the largest absolute growth
rate will come to dominate the flow. Koch (1985) has proposed
that the profile with a maximum absolute growth rate of zcro
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Figure 2: Streamfunction for Re .,y 15000, 4 deg inc. showing
the recirculating flow at the trailing edge.

(the transition profile between absolutely and convectively un-
stable regions) acts as a reflector of energy and in conjunction
with a body will set up a resonance at the neutrally growing
frequency of the transition profile, Monkewitz and Nguyen
(1987) proposc that it is the absolutely unstable profile furthest
upstream that comes to dominate the flow.

Flow Modeling

The flow is modelled by a Galerkin finite-clement code which
solves the steady incompressible Navier-Stokes equations in
penalty form. The mesh system is a 320 x 60 node orthogonal
‘C-grid’ consisting of quadratic quadrilateral clements. The
meshlines are compressed towards the surface of the acrofoil
in a geometric progression in an effort to properly resolve the
thin boundary layers therc. There is also mesh compression to-
wards the trailing edge where the flow scparates. The far-ficld
veloceity is applied at the external boundaries and no-slip at the
acroloil surfacc. The mesh extends out from the aerofoil by ap-
proximately 20 acrofoil thicknesses and the outflow boundary
is located about 8 chord lengths downstream.

The resulting nonlincar system of equations is inverted by
Newton-Raphson iteration. Velocity ficlds are computed lor
a range of Reynolds number using the field at cach Reynolds
number as an initial guess for the calculations at the next higher
Reynolds number. Typically, Reynolds number is incremented
in steps of 1000 and four Newton iterations are sufficient to
obtain convergence to single-precision machine accuracy. Ten
hours ol cpu-time on a 5 Mflop workstation is required to
calculate the velocity field over the Reynolds number range.
Figure 2 shows a small area ol the caleulated flow ficld.

For the stability analysis u-velocity profiles were extracted
ataserics ol stations in the ncar-wake of the acrofoil. Velocitics
at intermediate points in cach profile were obtained by linear
interpolation, the sccond derivative was approximated by
central-dillerence formula,

EXPERIMENTAL FACILITY

The water tunnel used in all the experiments was ol the recir-
culating type with an entircly enclosed working section. The
working scction and adjacent walls were [abricated from trans-
parent acrylic to give complete visibility. Water temperature
was monitored using a gauge mounted on the inlet pipe. The
maximum tunncl speed was 0.4m/s, with a velocity profile uni-
form in the working scction to within 1.0% (outside the wall
boundary layers). Turbulence intensity was typically 0.1%.
The velocity spectrum was [ree of sharp spectral peaks. A
full deseription is given in Welsh er al (1990). The flow was
visualised using the hydrogen bubble technique, the plane of
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Figure 3: Averaged hot-film spectrum from the near-wake of
the acrofoil, showing a peak at the vortex shedding frequency
of 3.03Hz

interest being illuminated with a 3 watt argon-ion laser. Veloc-
ity spectra were obtained using a hot film anemometer and the
data recorded using a PC. Since the purpose of the spectra was
only to determine the frequency of the vortex shedding there
has been no attempt at lincarisation.

The model used in this work was an uncambered C4 aero-
foil, of 10% thickness and a chord of 130mm. All experiments
were performed at an angle of incidence of 4 deg.

RESULTS AND DISCUSSION

The flow observed behind the acrofoil using the hydrogen bub-
ble technique clearly indicated the regular shedding of vortices
over a range of Reynolds numbers. Figure 1 shows the flow
for a Reynolds number of 15000. To obtain more quantitative
information a hot film probe was placed in the near wake of the
acrofoil. The spectra obtained from it clearly shows the vortex
shedding frequency (Figure 3).

Treating velocity profiles obtained from the finite-clement
analysis as locally parallcl, a stability analysis was performed
on cach. From numerical solutions of the Rayleigh equation the
dispersion relation between w and k could be determined for
a given local velocity profile. As in previous studics, only the
most amplified mode type has been considered. An example
of such a dispersion relation is shown in Figurc 4. The saddle
point clearly visible in the dispersion relation occurs at the
point where ‘4-‘:}:5) = 0. It is the valuc of w; corresponding
with this saddle point which determines the growth rate of
the most rapidly growing mode with a group velocity of zero,
and the absolute or convective nature of the instability. Such
a dispersion relation was calculated for successive velocity
profiles downstream of the trailing edge and from these the
nature of the instability determined. The results of this analysis
are shown in Figure 5. It can be scen from the graph of wi(ko)
vs. X that a region of absolute instability (w; > 0) cxtends
approximately 0.6 chords downstream of the trailing cdge of
the acrofoil.

As mentioned before, a number of dilferent criteria have
been proposed to predict the global instability frequency (the
vortex shedding frequency in this case) given the local instabil-
ity characteristics. A sclection of these criteria were applied,
the relevant local profiles are marked in Figure 5, and the results
arc summarised in Table L.
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Figure 4: Dispersion relation for a profile, showing a saddle
point at k = 3.98 — 3.76 corresponding to w = 2.24 + 0i
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Figure 5: Absolute growth rate and {requency downstream of
acrofoil with Regrer 15000, incidence 4 deg. Local resonances
dominating the global responsc according to, M: Monkewitz's,
P: Pierrehumbert’s, K: Koch'’s Criteria



Table 1, Instability Results Re 415000

Source Frequency (Hz) | Error
Experiment 3.03 =
Koch 343 13%
Pierrchumbert 2.36 22%
| Monkewitz et al 213 30%

From these results it can be seen that Koch’s criteria gives
fairly close agreement, being 13% in error with the measured
frequency. To further examine the uscfulness of Koch’s criteria
the procedure was repeated for two other Reynolds numbers.
The results are shown in Table II.

Table II, Comparison of Experiment and Frequency
predictions using Koch’s criteria.

Rechora | Frequency (Hz) | Error
| Mecasurcd | Predicted |

15000 || 3.03 | 343 | 13%
10000 1.795 1.94 6%
5000 0.733 0.738 | 0.6%

At lower Reynolds numbers the predictions of Koch’s cri-
teria become, to within the limits of cxperimental accuracy,
identicul with the experimentally measured [requency.

It is appropriate now to review somc of the assumptions
underlying this work to determine the possible causes of the
discrepancy in predicted {requency at higher Reynolds num-
bers.

Aside [rom the assumption that the mean flow is slowly
varying in the streamwisce dircction and essentially parallel,
which is necessary [or a simplified analysis to be possible, there
arc two other simplifications which may have an important
bearing on the accuracy of the computed results. The first
assumption is that the flow has been accurately modelled at
higher Reynolds numbers by the finite-clement analysis. In
fact, at higher Reynolds numbers convergence is more difficult
and that may result in some discrepancy between calculated
and obscrved results. The second assumption was that the
inviscid stability analysis (using the Rayleigh equation) would
be a sulficicntly good approximation at these reasonably high
(in terms ol stability analysis) Reynolds numbers, A more
complete analysis could have been performed by solving the
Orr-Sommerleld cquation instead of the Raylcigh cquation. At
firstit may appear paradoxical that we should attempt to account
lor a discrepancy that increases with Reynolds number by citing
the importance of viscous clfccts at these higher Reynolds
numbers.  However from figure 5 it can be scen that w, is
rapidly varying in the vicinity ol the Koch [requency - and
a small change in the position ol the transition profile, such
as may occur with the introduction of viscous effects, would
shilt the predicted frequency by an appreciable amount. On
the other hand, for a Reynolds number ol 5000 it is found that
the gradient ‘ﬁ; is [ar smaller, so even though the effects of
viscosity will in general be more significant at this Reynolds
number, the actual frequency shilt may be quite small. In this
way a viscous analysis may produce results closer to those
obtained experimentally.

CONCLUSIONS

It has been shown by experiment that the (requency prediction
criterion proposed by Koch produces a very good estimate of
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the vortex shedding frequency from an aerofoil at low Reynolds
numbers. With increasing Reynolds number this estimate be-
comes less accurate; it is conjectured that these errors result
from the inviscid analysis used here.
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