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ABSTRACT

The problem of flow into an evacuated tubular solar
collector is solved numerically.  The geometry is
cylindrical with the top open to a constant temperature
reservoir.  Due to the heating of the tube a natural
circulation flow is established and cold fluid from the
reservoir enters the thermosyphon and upon heating,
warmer fluid leaves the open top. The fluid is assumed to
be bounded by solid walls everywhere except at the open
top. The heating of the tube has been simplified so that
only a uniform temperature is assumed on the upper
surface of the curved wall with a different uniform
temperature on the lower surface. Fluid entering the
thermosyphon from the reservoir is assumed to have the
temperature of the reservoir. The closed end of the
cylinder is assumed to be adiabatic.

The solution domain is restricted to the cylinder with
specially modelled boundary conditions at the open top.
The vorticity-vector potential formulation of the
conservation equations in  cylindrical coordinates is
approximated by finite differences and solved by the ADI
method. Solutions have been obtained for water (Pr=6.5)
and Rayleigh numbers in the range of 1000 to 500000.
Cylinder aspect ratios (length/radius) of 4 and 10 have
been considered.

I. INTRODUCTION

Thermosyphons have found wide application in the
solar heating industry.  The usual design is very simple,
consisting only of a vacuum-insulated glass tube sealed on
the bottom end and open on top. The open top is
connected to a reservoir.

Lighthill(1953) laid the groundwork in the
investigation of thermosyphons. From his experimental
observations he made analytical formulations on the

occurrence of laminar and turbulent flows, critical
Rayleigh numbers and rates of heat wansfer. Other

workers have continued doing analytical studies based on
experiment  (Leslie(1960),  Martin(1954), Hasegawa
ctal.(1963)). Much later thermosyphons were modelled
numerically using high speed computers (Mallinson and
De Vahl Davis(1979)).

There have been in fact many works published on
mathematical modelling of natural convection inside
enclosed cavities dealing with various combinations of
gcometry, boundary conditions and methods of solution.
However very few works have been published to date on
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partly open cavities or geometries with one or more flow-
through boundaries. Values of vector potential, vorticity,
velocity and temperature are easy enough to determine at
solid boundaries. More often than not they are simply
imposed as known boundary conditions. However this is
not the case with flow-through boundaries. The vector
potential in particular is not very well known.

Hirasaki and Hellums(1967) have derived a general
formulation for the specification of boundary conditions
for the vector potential. Their formulation can be applied
to solid boundaries and it has been widely used as such,
but it can be applied to flow-through boundaries as well.
Wong and Reizes(1986) and Yang and Camarero(1986)
have successfully modelled flow into and out of a square
duct using the formulation. This involved the solution of
another vector B, whose surface curl gives the tangential
components of the ¥ on the inlet plane.

There are other problems arising from simulating a
flow-through surface. The velocity is no longer zero at
the inlet plane as it would be on a stationary solid wall.
Wong and Reizes(1986) have assumed a uniform inlet
velocity consisting only of the normal component, the
transverse ones being zero. Yang and Camarero(1986)
have gone further and experimented with a parabolic
profile. In both cases however the velocity profile has
been imposed rather than solved. For the case of natural
convection where motion arises from a temperature
difference, velocity cannot simply be imposed on the flow-
through surface.

Abib and Jaluria(1988) simulated buoyancy induced
flow in a partially open cavity by using a Neumann
condition for the velocity at the inlet plane. Velocity was
theretfore solved there being previously unknown. The
resulting velocity profile showed both inflow and outflow
occurring stably side by side on the same inlet plane.
Their  study was conducted in a  two-dimensional
framework.

The aim of this paper is to extend the study to three
dimensions while using cylindrical polar coordinates to
accommodate the geometry of real solar absorbers.

II. MATHEMATICAL FORMULATION

A. Governing Equations

The mathematical model is based on the solution of the
energy and vorticity transport equations, using the
Boussinesq approximation.




%:-v.(ﬁe)wﬂe e}

g_C:vX(Exz)-RaPer(eé)-Per(in) @
t

where Ra is the Rayleigh number (gBR3(Ty-To)/kv) and
Pr is the Prandtl number (v/k). Figure (1) shows the
notation used in the equations.

Figure 1: Schematic Diagram of the Cylinder

Equations (1) and (2) are non-dimensionalized using
scaling factors R and &/R for length and velocity
respectively. Non-dimensional temperature is defined as
0= Z(FI“TMEAN)/(TH*T('). TMEAN being (THfTC),"z. The
thermal diffusivity is k, kinematic viscosity v, coefficient

of thermal expansion B and the gravity vector g, The
aspect ratio is defined as L/R.

The vorticity is defined as

[=Vxu (3)
and the vector potential as

u=VxW¥ (4
The vector potential is assumed to be solenoidal, i.e.

Vew=0 (5)
Combining (3) and (4), we gel

[=VxVxV¥ (6)

The mathematical model consists in the solution of
equations (1), (2) and (6) in cylindrical coordinates. The
boundary conditions only need to be specified and the
model 1s complete.

The continuity equation Veu = 0 is automatically
satistied in the vorticity-vector potential formulation and
need not be solved explicitly.
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B. Boundary Conditions (6, u, {)

The temperature is specified at the walls of the
cylinder, © = 6y on the upper surface and 8 = 6 on the
lower. The closed end on the bottom is adiabatic, hence

08/dz = 0. On the open top,fluid outgoing is assumed to be

of uniform temperature in the z-direction or 98/dz = 0.
Fluid in-coming is assumed to have the reservoir
temperature, Opgs. All results shown in this paper are
based on Bppg = B¢

The velocity is zero at all solid walls, i.e. sides of the
cylinder and bottom end. At the open top, velocity is
assumed to have only the axial component, i.e. u,v=0. The
profile of w is not specified, but if continuity is to be
satisfied, then

aw

— =0 7

2 (7
The vorticity boundary condition is obtained from (6) at
all boundaries.

C. Boundary Condition of ¥

The boundary condition for ¥ on solid walls comes
directly from Hirasaki and Hellums(1967). The tangential
components of ¥ on any solid wall are zero which leaves
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since vector potential is solenoidal.

For the open top, the existence of a vector B is assumed,
whose surface curl gives the tangential components of ¥,
i

.=V %B 9)

The tangential components of B are zero or B = (0,0,B,)
therefore

¥o= 18, (10a)
roof
JB

Po= o — 10b

7 o (10b)

Since vector potential is solenoidal, then
PR d
& =) 11
3z (11)

Equations (10a) and (10b) require the solution of B
beforehand. By combining (4) and (9)
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The vector B can be solved from the velocity at the inlet
plane. There is only one restriction to the solution of B.
It is necessary for ¥ to be continuous at the edges.

For 'Yy to be continuous at the intersection of the inlet

plane and the side walls, we let ¥y=0atr=R, or

9B
dar

r

=0 there.

(14)

For ¥} to be continuous at the edge, the following
condition must be applied at z = 0:

W) g o 9’B, o

ar drdo -

But from (14)

3'B, 3

drado

aBz —-—
a_¢ ar]_

Therefore in order to satisfy the condition of continuity for
Wy and YWy, it is sufficient to assume (14) as a boundary
condition for the solution of B,. The third component ¥,
is already continuous at the edge.

The vector B is assumed here to exist only on the inlet
plane for the sake of the solution of ¥. However a similar
vector can be assumed to exist on any of the other
boundaries and a similar derivation performed. The
simplest solution for those other B's would be the null
vector in which case the vector potential would end up as
specified in (8).

[1I. THE SOLUTION

In finite difference formar, time derivatives are replaced
with forward differences and spatial derivatives with
central second order differences. The energy and vorticity
transport equations are solved using the Samarskii-
Andreyev ADI method. The vector potential and the B
vector equations are solved using SOR. The solution is
iterative and begins with the following initial conditions:
All variables except temperature are set to zero;
temperature at the upper wall is set to 8 and on the lower
will B¢.

The iterative process begins with the solution of
temperature  from equation (1), Then the three
components of vorticity are solved using equation (2).
The vorticity boundary conditions are solved from current
vitlues of vector potential. New values of vector potential
are solved using (6). Boundary values of W are solved
from current values of B,. New velocities are solved
using equation (4). Then finally new values of B are
generated from w using equation (13).  The cycle is
repeated until all values become steady or when the
change after each iteration is less than a specified value.

The method is based on a modified version of the C3D
program used by Leong and de Vahl Davis(1979).
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IV. RESULTS

All results presented were generated from a grid of 31
%x32x33 in the 1, ¢ and z directions respectively. Solutions
for two aspect ratios were obtained, 4 and 10. The fluid
was water with Pr of 6.5 at room temperature. Rayleigh
number ranged from 103 to 5x105. The inclination y of
the cylinder was 45° from the horizontal in all results,
Computations were performed on an IBM RISC/6000
workstation. It took 12000 iterations at 4.7 cpu seconds
per iteration to get convergence at Ra=103 and L/R=4. Ap
Ra=5x10° 200,000 iterations were required for
convergence.

Figure 2: Velocity Profile at Open Top

V. DISCUSSION

Figure (2) shows the development of the velocity
profile at the open top with increasing Rayleigh number.
At low Rayleigh numbers the area occupied by fluid
coming in is roughly equal to the area occupied by fluid
going out. The maximum velocities in either direction are
also roughly the same, around 35 in non-dimensional
terms. At higher Ra the incoming fluid tends to take up a
greater area, in the shape of a crescent on the lower half of
the cross-section. The fluid going out takes up the centre
and the top of the cross-section. Outgoing fluid also
travels at a higher velocity than the incoming fluid.

The path of the fluid is shown in Figure (3). There is
basically one major loop. Cold fluid creeps down the
lower wall of the cylinder, reaches the bottom, turns
around and creeps along the upper wall until it leaves the
cylinder. There is however a tendency to spread out from
the vertical plane of symmetry on the way down. Fluid
flows along the walls going up and converges to the
middle on the way out. This shows why the area occupied
by outgoing fluid in Fig.(2) is smaller than that coming in,
There is also an accompanying increase in velocity as a
greater volume of hot fluid converges in the middle.

Fluid entering the cylinder at the vertical plane of
symmelry remains in this plane throughout the entire




SIDE VIEW TC!P VIEW

OPEN TOP
OPEN TOP

=

)
1

(=]
]

Ra= 5x103

Figure 3: Particle tracks (L/R = 4)
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Figure 4: Vector plot on a vertical plane (L/R =4)

journey. There is a small area near the bottom where
velocity is very low. The vector plot (Fig.4) shows more
clearly the velocity distribution at the vertical plane. There
is a well defined low velocity spot near the bottom.

The above results show that flow-through surfaces can
be simulated numerically using the Hirasaki and
Hellums(1967) formulation without necessarily imposing a
fixed velocity profile. Real evacuated-tube solar absorbers
operate at Rayleigh numbers and aspect ratios much
higher than the range presented here. This however is a
start; this area has not been investigated widely either
numerically or experimentally. Tests at higher Ra are

being planned for the future with hopes of an experimental
COMPArison.
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