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ABSTRACT

A numerical study of natural convection of low
Prandtl number liquids is undertaken. An accurate time
marching technique has been used to simulate steady and
unsteady flows. Results have been obtained for the two-
dimensional case over a range of Prandtl and Grashof
numbers. Limited results for the three-dimensional case
are presented and compared wilh the two-dimensional
simulations.

INTRODUCTION

The problem of thermally-driven convection of low
Prandtl number fluids (i.e. liquid metals) is relevant to
a wide range of engineering and industrial applications
such as material processing, crystal growth, manufactir-
ing and welding. For example, in crystal growth, the flow
structure and thermal field play a very important role on
the crystal formation and quality (urle, 1983 and Lan-
glois, 1985). The study of these types of flows also allows
a better understanding of the behaviour of nonlinear dy-
namic systems, in fact, it is well known that as buoy-
ancy increases (i.e. at larger Grashof numbers), there is
a transition from a steady flow to an unsteady oscillatory
one (Roux, 1990). This oscillatory instability is associ-
ated with a Hopf bifurcation which significantly changes
the flow structure. At higher values of the Grashof num-
ber there is also a reverse transition from the oscillatory
flow to a steady one (Behnia et al. 1990).

The problem is further complicated by the three-
dimensionality effects which can stroungly aflect the flow
and the thermal structures (Behnia and de Vahl Davis,
1990; Alrid and Zebib, 1990). In studying Lhis prob-
lem, experimental technigues such as Laser Doppler Ve-
locimetry (LDV) cannot be used because the media is
opaque and the introduction of measuring probes into
the flow not only causes interference but also may yield
erroneous measurements because of the non-wetting na-
ture of these liquids. For these reasons, in an experi-
mental investigation of these flows, at best only global
quantities, like the average Nussell number can be mea-
sured. To this end, a computational approach to the
problem becomes very altractive as it enables one to
obtain a detailed picture of the flow pattern and its evo-
lution in time. However, it is noted that becanse of the
low P'randil number values, the inertial forces are domi-

nating with viscous effects confined in very thin regions
near the wall and hence the problem becomes very non
linear. Therefore it is essential that the numerical al-
gorithms are fast, efficient and robust. Further, the un-
steady nature of the problem requires very accurate time
discretization, otherwise very erroneous results may he
obtained.

The work presented here is concerned with the tran-
sient numerical simulation ol the buoyancy driven con-
vection of a lignid metal in an enclosure. A very accu-
rate finite difference based algorithm is used to obtain
results both in two and three dimensional geometries.
The two dimensional results are compared with tinse of
Mohamad and Viskanta (1991).
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Figure 1: Twe dimensional 64 x G4 grid.

GOVERNING EQUATIONS

An upright cavity ol unity aspect ratio is considered.
The motion of the Boussinesq fluid is due to Lhe buoy-
ancy force generated by the temperature difference be-
tween the two isothermal hot and cold vertical walls.
The other walls are assumed to be adiabatic. All walls
of the enclosure ‘are solid impermeable and stationary.
The problem is defined by the continuity, Navier-Stokes
and energy equations. They are nondimensionalised us-
ing the appropriate scalings of AT (temperature differ-
ence between the hot and cold wall), L (cavity width),
L?/a (diffusion time) and «/L (velocity). In the nondi-
mensional form the equations are:

V.v=0 (])
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where v = Ui+ Vj+ Wk, P is the pressure, 8 is the tem-
perature field, Pr = v/, Ra = Grl'r = g8 L? AT/va.
The initial conditions are assumed to be that the fluid
is at rest and at the cold wall temperature:

v =0 (4)
()
Then suddenly the hot wall temperature is increased to
unity initiating the flow. At the boundaries the condi-
tions are:

6=0

=1

at ® =10

=0 atz=1 (7)

ae
e 0  on all other walls (8)
v=0 on all walls (9)

NUMERICAL SCHEME

The governing equations are discretized using fi-
nite difference approximations; a second order centered
scheme is used for the space discretization. Because of
the sharp gradients of physical quantities il is essential to
use non-uniform grid spacings. The grid is generated ns-
ing sine functions, which allowed very fine grid spacings
near the walls becoming gradually coarser away [rom
them. A typical 64 x 64 grid used in the two dimen-
sional computations is shown in Fig. 1.

The diffusion terms are discretized in time by means ol
an implicit Cravk-Nicholson method. For the conveclive
terms of the equations a conservative form is nsed.

A low-storage Runge-Kutta method (Wray, 1987) is
adopted for the time marching procedure. The solulion
at the new time step is obtained using three sub-steps; in
each sub-step a fractional step method (Kim and Moin,
1985) is nsed. The time discretization technique provides
an overall accuracy of the sccond order. Because of the
implicit treatment of the diffusion terms, the constraint
on the time step size is reduced; in fact, this is only
limited by the Courant-Friedrichs-Levy stability condi-
tion of CI'L < /3. In the primitive variable formulation
of the Navier-Stokes equations, Lhe evaluation of pres-
sure requires the solution of an elliptic equation. Since a
direct solver is not suitable for a three dimensional prob-
lem, a Correction -Storage multigrid is used to speed up
the convergence rate of an iterative solver (Brandt, 1977
and Esposito, 1991).

RESULTS

For testing and comparison purposes, inilially two

dimensirnal results were oblained. Also, some three-
dimensional flow calculations were carried ont. The re-

sutls which have been generated so far are as follows.

Two Dimensional Case

For this case we chose three different values of Prandil
number (Pr = 0.001, 0.005, 0.01). For comparion pur-
poses, the rang~ of parameters was close to Lhat of Mo
hamad and Viskanta (1991). A mesh sensitivity analy-
sis was performed using three different grids (32 2 32,
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64 x 64 and 128 x 128). For the case of Pr = 0.005 and
Gr 107, solutions at the same time were compared.
It was noted that the solutions generated using 64 x 64
and 128 x 128 cells were extremely close. Therefore, as a
compromise between accuracy and computational cost,
the 64 x 64 grid was selected. In fact, the coarser grid
(32 x 32) solution also showed the features of the flow
quite accurately. This is in line with the observation of
Mohamad and Viskanta (1991).

Pr Gr || Nu frequency
0.001 10° || 1.0813 steady
3x10% || 1.2763 2.4

0.005 10° || 1.5996 steady
2% 10°% | 1.8975 6.8

3% 10% || 2.0730 8.5

5% 10% || 2.3158 13.7

107 || 2.6408 17.8

0.01 5x 10°% [ 2.7859 21.0
107 || 3.1671 25.4

Table T: Summary of two-dimensional resnlts

I'r = 0.001 Tor this value, the stability constraints al-
lowed a time step of A7 = 0.001. Computations were
performed at Gr = 10°. The time history of different
features of the flow, such as wall Nusselt number, ve-
locity components and temperature at several locations
were checked. The solution converged towards a steady
state very slowly and alter about 10000 time steps the
amplitude of the oscillations nearly vanished. The low
primarily comprised of a single cell circulation in the
middle of the cavity (Fig. 2). The temperature field
showed a slight deformation compared to the conduction
solution, due to Lhe conveclive circnlalion (see Fig. 2).
The results agree with the solution of Mohamad and
Viskanta (1991). They alse fonnd a steady solution for
this case.

As the Crashol number is increased the flow hecomes
unsteady. Al Gr = 3x10° the flow exhibils a weak oscil-
lation. The [requency of this oscillation depends on Gr
ad Pr. A summary of the features of the solution for this
run, as well as other cases is given in Table 1. The aver-
age Nusselt number on the hol (or cold) wall calculated
over several periods is also given. Instantancous contour
20
A loss of symmetry in the llow
ficld is observed. This is due to Lhe fact that the inilia-

maps of the stream-function and isotherms at =
are shown in Iig. 3.

tion of the Mow is by a non-symmetrical initial condition.
As the flow is unsteady, this lack of centro-symmetry is
preserved, however averaging of the solution over a long
period yields a symmetrical solution. Loss of symme-
try in unsteady natural convective lows has also been

observed by others (Le Quéré, 1990).

P =0.005 For this value of Pr the tine step was the
same as before (0.001). The solntion al Gr = 105 was
steady, whilst for Gr > 2 x 10° an oscillatory regime is
reached after the initial transient. The time history of
the Nussclt number given in Fig. 4 clearly shows this. At
this Pr the velocity magnitudes are higher than in the
previons case and hence the isotherms indicate a stronger




il

Figure 2: Left: streamlines at 7 = 10, Pr = 0.001, Gr = 10%;
levels —0.46...0.0 (0.01). Right: temperaturefield at 7 = 10,
Pr = 0.001, Gr = 106; levels 0.0...1.0 (0.0'25)

Figure 3: Left: streamlines at 7 = 20, Pr = 0.001, Gr =
3 X IOG; le-als —1.80...0.05 ((].05). Right: temperature field
at 7 =20, 7r = 0.001, Gr = 3 x 10 levels 0.0... 1.0 (0.025)

departure from the conduction solution. At (v = 3x10°
the oscillatory flow has a frequency which is more than
three times that at Pr = 0.001. An increase of (ir leads
to a stronger secondary recirculation in the corners of the
cavily (see Fig. 5). After the initial transient period, the
velocity in the centre of the cavily was recorded and a
frequency analysis was performed. For Gr =5 x 10% the
amplitude of Fourier transform of the velocily probe Ltime
signal is given in Fig. 6. The peak of the first harmonic
is clearly shown.

Pr=10.01 The higher velocitics indueed by this [/’r
dictated a smaller time step (A7 = 0.0005). TFor (v =
107 the central cell broke into {wo, wilh recirenlating
cells near the corner (IMig. 7). This transition to mulli-
celhilar eonvection agrees with the resull of Mohamad
and Viskanta (1991).
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Figure 4: ITistory of the average Nussell number for 'r =
Oaoes, G % 10,

Figure 5: Left: streamlines at 7 = 10, Pr = 0.005, Gr =
5 % 10%; levels —5.9...0.2 (0.1). Right: temperature ficld at
7 =10, Pr = 0.005, Gr = 5 x 10%; levels 0.0...1.0 (0.025)
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[Mignre 6: Frequency analysis of a velocily probe l.uneymgnal;
Pr = 0.005, Gr = 5 x 108

Three Diensional Case

Due to the excessive 3-1) computational cost, so [ar
results have been obtained using a 32 x 32 x 32 grid for
lower values of G'v. The O time requirement on an
IBM RISC/6000-540 for cach step was about 10 seconds.
Thus it takes more than one day of computalion to sim-
ulate the evolntion of the flow to = = 20. For Gr = 10°
and Pr = 0.001, unlike the two-dimensional solution the
flow was nnsleady. The three-dimensional nnsleady mo-
tion was complex and showed that Taylor-Gortler vortex
pairs are generaled near the solid walls (Iig. 8). As the
flow is unsteadv and three-dimensional, it is very difli
enll to visnalize it.  Tlowever, to give a “feel” for the
flow structure, we used the velocity field at an instant in
time and generated particle tracks. Ttis noted that these
tracks do nol represent the correet path of particles and

al hest just indicate the overall eellular structure of the
flow al that time. Fig. 9 shows the llow structure and
its three-dimensional nature. VFig. 10 shows velocity os-
cillations, For this case, the time averaged Nu was 1.19.
r = 0.01 was also simulated. The time history of Nu
indicates that the flow is unsteady (Fig. 11).

R s 55 it T ~u
Figure 7: Lefl: streamlines at. 1 = 10, v = 0.01, Gr = 107;
levels —8.8...0.2 (0.2). Right: temperature fichl al 7 = 10,
Py =0.01, Gr = 107; levels 0.0... 1.0 (0.025)
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IFigure R Velocity vectors in the plane 2 = 0.5: 7 = 13
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Figure 9: Particle tracks generated from the velocity field
at 7 = 13. (strating point: 0.5, 0.995, 0.5); Pr = 0.001,
Gr =108
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Fignre 10: Thme history of the velocily components at the
centre of the cavily; I'r = 0.001, ¢/r = 108
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Figure 11: Time history of the Nusselt number: P’r = 0.01,
Gr=10%




