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ABSTRACT: We study a modified particle method for
solving the one dimensional nonlinear equation

u, + f, ()= 0. It involves creating an initial particle path and
an initial approximation i, with error |ug — ik, = O™,
where N is the number of particles. We compare the results

of numerical experiments with time step Ar = O(+\f1/ N) with
the exact solutions for several test problems.

1. INTRODUCTION

Particle methods have been used to treat a broad class of
problems. Puckett (1989) used a random particle method for
the Kolmogorov equation. In fluid mechanics, these methods
are called vortex methods and have been used for solving
incompressible and viscous flows (Chorin, 1973 and Chorin
and Marsede, 1979). In such methods particles represent
point concentrations of some derivative of the solution.

We study a particle method for approximating the solution
of one dimensional initial-value problems

u+ f =0 in RxR* )

u(x,0) = uy(x) xeR
This equation is a conservation law and arises in the study of
nonlinear wave phenomena, when dissipation effects, such as
viscosity, are neglected. When f”(4)>0 and uy(x) <0, the
above equation (1) is not classically solvable even if f(u) and
1y (x) are analytic, and for some initial data the weak solution
of this Cauchy problem loses uniqueness. It is our goal to
develop a numerical method involving these equations which
can approximate the physical solution.

In our method, the approximate initial data i is a step
function approximation to g and is required to be monotonic
(assume that ug is continuously differentiable on R and

Uy € L} (RYA L™ (R)) and the error for initial approximation is

O(N™Y). The shock is treated by altering the speed of
propagation for each particle which has been obtained from
the "jump condition" satisfying the entropy condition. In the
expansion case, the approximate rarefaction-wave solution is
obtained by utilising the nonlinear character, initially creating
a small pseudo-compression area between the exact wavefront
and the approximate wavefront.

Here, we compute solutions of Burger's equation with
different initial values. The solutions reveal that the shock
wave or the rarefaction wave are determined by the initial
data, not by "further events". An estimate of the error is
given.

2. THE PARTICLE METHOD
In this section we describe the numerical approximation to

weak solutions of the scalar Cauchy problem. Note that the
equations (1) can be written as
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w+ fu, =0  in RxR* @
u(x,0) = ug(x) xeR
where uy(x) is assumed to be a function of bounded total
variation. It is well known that weak solutions of this
problem are not unique. The total differential du is ug(x). If

x and ¢ are constrained to lie on a curve L, then at any point P
on L we have
du dt dx
B i

ds s s G)
where now dx/ds is the gradient of curve L at point P.
Comparing (2) and (3), the equation (2) can be interpreted as
the ordinary differential system

du

e 0 4

dx _ ,

FE fw) (5)
dt

. = (6)

s=t
Equations (4), (5) and (6) show that the characteristics of
equation (2) are determined by three ordinary differential
equations. It is easy to see that the characteristics intersect in
the (x,r) plane. Since the slope of the characteristic is
1/ f’(u), the characteristics have slope determined by their
values at r=0, ie. 1y (x). If there are points x; < x, with
= 1 < . =m
Flota)  Flugta)
then the characteristics starting at (x;,0) and (x,,0) will cross
in >0. Thus at P, the solution must be discontinuous, and
we can see analytically that discontinuities must form if ug is
negative at some point. Assume that f” >0, since u is
constant along the characteristic, then u must implicitly be
given by
u(x,t) = uy(x — if "(u(x,1)))
So if u, is a differentiable function, then we can use the
implicit function theorem to solve this equation for u.
Provided that ¢ is sufficiently small, we have
__ e
Lhugf7Qye 7~ 7 T+ fr(ue
It shows that if uj <0 at some point, both u, and u, become
unbounded when 1+ uyf” (1)t tends to zero. This implies
that we cannot obtain a globally defined solution, and this
conclusion is independent of the smoothness properties of u,
and f. The phenomenon is a purely nonlinear one. An
additional principle is needed to select the unique physical
solution, that is given by the validly of an entropy inequality
(Smoller, 1988). A particle method for solving the nonlinear
equation (2) involves the approximate solution of equations

(4)-(6). The processes are combined by moving the particles
along their characteristic forwards with time, and then using

m

I



the particles to represent the point concentration of some
derivative of the solution at each particle position at that time.
Thus, the velocity field can be obtained from these particles.

If f (M)=(M2 /2) , (1) becomes the inviscid Burger's

equation
u+uu, =0
u(x,0) = up(x)
which has the property that the only C' functions which

satisfy it in ¢>0 are those which are monotonically

nondecreasing in x for each fixed 1 > 0. So, it is necessary to
take a monotonic restriction initial data at each time step. This

requires that the initial approximation u® is monotonic. We
now assume initial data «° satisfies u° e Cl(R), w®<0. Let
wj denote the strength or weight for each particle, xj denote

the position of the jth particle at time nAr, #i(x,t) denote an
approximation to the solution u(x,r) of equation (7), and

i@} =" (x}) denote the value of #" at the jth particle position

at time nAt. The initial particle position x? is generated by

t>0
(7

taking the inverse of u®. Then if uo(x) =g(x),

-1 J :
1—2) =L N
£ N) J

% @®
g l1/2N) j=N
Thus, the initial particle position is a monotonic sequence.
The strength for each particle is given by
o 1u(x), 0]y
Wi=————
N
Here for convenience, let Iu(x?,O)lmax =1.

Now, we approximate u®
fixed strength wj-’ , so that

()}

using N particles, each with

N
&'_?=2H(x?—x?)w? (10)
i=1
where H(x) is the Heaviside function
H(x) e (11
=0 x<o0

Next we make the approximate solution to satisfy the
monotonic restriction at each time step. Notice that if the

strengths are initially chosen as wf,-) =1/ N, the strength of
each particle satisfies

()<w?£1

N
Z wl=1 uz
J
J=1
Since x? is an ordered monotonic sequence, ie. X <x5< .-
Sx,%, it implies that 0 < u}) <1 (13)

and we obtain the initial approximation ﬁ? =1 only if j=1.

The approximation of u” obtained by N particles will have
order

[4° -, =oasn) (14)

Now, we will see the initial distribution transported
conservatively by particles in the flow. This involves the
solution of the ordinary differential equations (4)-(6). First,
we solve the characteristic equation (4) to update particle
positions

X=u
x(0)= x? (15)
Using Euler's method, we have
N
X =xt Ay HP - xwf (16)

i=l
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Thus, we obtain the updated positions for each particles at

time (n+1)Az, where the time step is chosen as Ar =41/ N .
To obtain the velocity for each update particle position, we
solve the ordinary differential equation

n=0 (17a)
Using the upwinding finite difference scheme, we obtain
ur_:+1 =gt
L L=p (17b)

At
Equation (17b) implies the strength of each particle is
conserved in each time step, that is

witl =

| 4 (17¢)
It is easy to show that ZW;‘ =1 implies z wf“ =1, and that
i J

k41 since @i} is a particle solution, also

for time 0< /¥ <t

ﬁ",-”l is a particle solution. The solution at time t*F= (n+DAr
is given by the combination with all the particles,

N
=Y Ha-x T omw! e
Jj=1
Since we have exactly obtained the particle positions, and
noted equations (17) say that the strength of each particle is
conserved along the solved characteristic line, we have the
following relations

[0 = 0= u? . ¥ Hx—x)@ml (0] <00/ N)

(18)

(19a)

min u Sﬁ? < max u” (19b)
xeR xeR

At time >0, the error increases and has a maximum error

before the shock like O(+/1/N). Now consider the case
k+1

and

when the time t>1¢ The characteristic theory gives a
multi-valued solution. It says the shock has been formed and
so if we continue to solve, this will induce the solution to
"blow up" at the shock front. In this case, we can consider
simply altering the speed of propagation for each particle.
Denoting this speed by s, the "jump condition" satisfies the
entropy condition,

G )= ) et

d W — U, 2

(20)

&
We take the left limiting value 1 as i , the right limiting

_pE . 1 K+
value u, as iy, and in progress, once x; 2=x; ,then go

back one time step to recalculate the particle position with the
k41
speed .'fj; " which is obtained from (20),

rhl ‘k 1k+l
Ij =xj +A!SJ' (21)
Thus, the solution for ¢ = **! is given by
N
1k+1 Ji+| f.l+l ‘k+1
Wy =Y H(xi -x wi (22)
=l

Notice that the strength of each particle does not alter at the
shock front, and thus, once the shock is formed, the max-

error for 2 t**1 can be measured by calculating the area error
s=|[" (u-max|~ 01/ 2VN) (23)

1
That is, the approximate solution ﬁ;’“ will have order

O(1/2/N) forall t =%,
3. THE RAREFACTION WAVE

We now consider initial data which is piecewise constant,
such as

Uy

u(x,0)= {u

X <Xxp

X2Xx, (24)



In this case, the density decreases continuously from y; to u,
as time increases, and the contact discontinuity is due to the
original discontinuity in the data. As time increases, the
solution will form as the "rarefaction-wave". To solve this
problem, we utilise the inherent character of the nonlinear
equation that the solution converges to the rarefaction wave.
First, we create a small region which has the compression
property relative the approximation wave front locally and the
expansion property globally. This small region can be

specified as [ngl,lxuld-%]. Then, place N particles in this
interval, take the strength of each particle for 1; is
w; =t /N and the strength of each particle for u, is
=u,/N. Let i

Wi, and i, be the approximations to the

contact discontinuity 1, and u,

N
=00 _ 04 __ 01y 01
uj = ZH(JQ XJ- )W‘-
1 o (252)
~0,r _ 0,r 0,r 0,r
i =Y g =X )w;
=1
and
11 i 1, 1.1 LI
~n+l,l _ n+l, I _ntl, n+l,
i (25b)
~n+lr _ n+l,r n+lry . n+lr
ii; —ZH(x[- =X W
i=1

Let the particles travel at the approximation speed, then we
obtain the position for = (n+1)At
n+l _ _nl ~n,l

Xj = IJ- + Aluj

x}”l" = x}‘" +Atﬁj—"’
The interesting thing in this particular problem is that, after
choosing our initial approximation to initial data, the inherent
nonlinear character of the equation causes the error to decrease
with time and the approximate solution to converge to the
exact solution as time tends to infinity

(26)

lim |u - a”| =0
n—yee

We have found that as time increases the local error decreases
like

lerr1__ =~ 02y @7
n

: ; P . At
and the maximum error at each time step is also like O(—).
n

The total error of area between u and # may expressed as

15-8i= _[[xwxﬁ%]Iu—uldx (28)
and the area change with time may be written as
£y
L (29)
D5
dt

where, V and V are the expansion speeds in the u and i
covered areas respectively, and hence relate to 1 and .

. 1
In the small "pseudo-compression” region [Ixnl,lxol+—ﬁ],

the density suffers pseudo-compression relative the
approximation wavefront only locally. We use the term
"pseudo-compression” to indicate that effect looks like a
compression wave, because the propagation speed in the
small region is faster than the approximation wave, and after
some time, it should catch the approximation wave, but no
such shock will be formed because it is not a real compression
wave. In fact, the density behind the real wave must decrease
with time, and the real wave front must form as the expansion
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wave. In the small region, the expansion speed decreases
with time while the fast propagation speed (compared with the
approximation speed) moves the wavefront to pursue the
approximation wave. So, the small area decreases in time.
Once the two wave fronts overlap at some time ¢ =1,, they
will have the same expansion speed and the same wavefront

expansion. For r>r, and wu>i, then V2 Vs
V™1 <v*, and V**! < V”, which imply
gntl _ S-'n+1| £|Sn _§n| (30)
and
‘enzl <1 G1)
e

Expression (31) implies that the particle solution will weakly
approximate the exact solution, and the convergent speed
relates to its accuracy at each time step. Notice that the speed
of convergence is related to the small pseudo-compression
area. Since

<

S (32)

1 1 1
TR Gres +—)—x
(%o N) xp| £ |(x0 5 N) Xp (xg jN) 0

we have an alternative to placing a large number of particles in
the initial approximation region. We have found that if we
take j=2, the approximate solution will converge to the exact
solution at a rate j times the original rate. This implies that the
error will decrease at the rate O(At / jn).

4. NUMERICAL RESULTS

We present several test problems by taking different initial
values for the inviscid Burger's equation (2). In case (a), we
set the particle number N=1000, and a time step At =1/32.
In case (b) and (c), we use only 100 particles and a time step
Ar=0.1.

(a) Consider continuous initial data with ug(x) < 0.
1 x<0
u(x,0)=<1-x 0<x<1 (33)
0 x>1

The solution to this initial-value problem is a compression
wave which initially consists of a fan for 0<x<1, for the
compression wave the fan closes (or compresses) with time
until a shock is formed, and the solution is a continuous wave
that gets steeper until /=1, when it becomes a shock. The
physical solution for ¢ <1 is (Smoller, 1988)

1 x<t
u(x, 1) = 11"3: r<x<l (34a)
0 x>
and for 121
1 b R ¢
1-x
u(x,t)= 1= r<x<l1 (34b)
0 x>1
(b) Consider initial data with one contact discontinuity
.0) 1 x>0 35)
u(x,0)=
0 x<0

This initial data leads to interesting results. There are two
solutions which satisfy the equation, one is a discontinuous
function (Smoller, 1988)

1 x>0.5¢
wxo=ly  on e
and one is a continuous function, which is a rarefaction wave
0 x<0
U (x,)=4x/1 O<x<t (36b)
1 S gt



‘We obtained the approximate solution to the rarefaction wave
solution. From case (2), we can see a feature of a nonlinear
equation, in which continuous initial data can have a
discontinuous solution, and a continuous solution can follow
from discontinuous initial values.

(© Consider initial value with two contact
discontinuity fronts (Wu and Hua, 1988)

1 x205
MEDSHE= g

The solution to this initial value is a rarefaction wave with two
fans

{q;(x), x<0.5—t or x>0.5+1
ulx )=

(x—0.50)/1, 0.5—r<x<0.5+¢
‘Wu and Hua (1988) mention MacCormack's finite difference
scheme for the weak solution
u(x,t)=@(x), t>0
which does not approximate the physical solution.

@37

(38a)

(38b)

Table I Error in I?-norm for case (a) using N=100 particles.

error(t) | t=0.0 =0.5 =1.0 t=1.5 =20 t=2.5

case (a) | 0.00103 | 0.00202 | 0.00350 | 0.01435 | 0.01435 | 0.01435

The errors for case () are given in Table I and for cases (b)
and (c) are given in Table II. Comparison of the convergence
speed with change the initial pseudo-compression size using
the same number of particles is given in Table III. The errors
in 12 -norm for case (a) are shown in Table I. As we can see
from Table I, the error for case (a) is like O(\/1/ N) at time

t< t", and the max-error at the shock front is like O(N_MT).

Table IT Error in £?-norm for cases (b) and (c)
using N=100 particles.

error(l) t=0.0 =0.5 t=1.0 =135 =2.0 2.5
case (b) | 0.55921 ] 0.01106 | 0.00559 | 0.00373 | 0.00280 | 0.00224
case (c) | 0.55921 | 0.01106 | 0.00559 | 0.00373 | 0.00280 | 0.00224

In Table II, the errors are decreasing with time even if the
errors at =0 are large. The error should be decrease in time
because of the equation's nonlinear character as we described
in section 2, The speed of convergence decreases like

O(At [ 2n).

Table I Errorin Z7-norm with decreasing size of the
pseudo-compression region using N=100 particles.

error(t) | =0.0 =0.5 =1.0 t=1.5 =2.0 =2.5
case (b) | 0.55921 | 0.00559 | 0.00280 | 0.00186 | 0.00133 | 0.00112
case (¢) ] 0.52301 | 0.00523 | 0.00262 | 0.00174 | 0.00131 | 0.00105
Lo0
=
t=0.5
t=1.0 1=2.0
075 - t=1.5 1§
t=0.0

.0.00 1 !

Figure I Compression wave solutions for case (a)
showing the formation of the shock at z=1.
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Table IIT shows that the convergence speeds for cases (b) and
(¢) depend on the size of initial pseudo-compression region
[xg,xp +1/ jN1, and illustrates that the rate of convergence is

like O(Ar/2jn). Figures 1, 2 and 3 illustrate the nonlinear
behaviour of each case, such as the shock and the expansion
phenomena, and compare the approximate and exact
solutions.

Conclusion: The solutions of a nonlinear equation with
different types of initial values are approximated by a particle
method. The accuracy for the compression wave is

O(/1/N) and for the rarefaction wave is O(At / 2n).
Numerous numerical experiments show that this particle
mehod used here is accurate, stable, simple, and that the
solutions are determined by the initial data, not by "further
events".
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Figure 3 Rarefaction wave solutions for case (c) with 2 fans.




