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ABSTRACYT

An  operator—splitting  algorithm  for  the
three —dimensional convection —diffusion equation is
presented . The flow region is discretized into

tetrahedronal elements which are fixed in time . The
transport equation is split into two successive initial
value problems: a pure convection problem and a pure
diffusion problem. For the pure convection problem , solu-
tions are found by the method of characteristics . The so-
lution algorithm involves tracing the characteristic lines
backwards in time from a vertex of an element to an inte-
rior point . A cubic polynomial is used to interpolate the
concentration and its derivatives within each element .
For the diffusion problem , an explicit finite —element
algorithm is employed . Numerical examples are given
which agree well with the analytical solutions .

INTRODUCTION
The operator—splitting technique has been
developed by many researchers for solving the

two —dimensional convection —diffusion problems (e.
g. Holly and Preissmann 1977, Sobey 1983, Ding and
Liu 1989). The basic concept of the operator —splitting
approach is to split the convection—diffusion problems
into two successive initial value problems : a pure convec-
tion problem and a pure diffusion problem . Most suita-
ble numerical schemes can be selected to solve each
sub—problem so as to minimize the numerical damping
and oscillations .

In this paper , the operator —splitting approach de-
veloped by Ding and Liu (1989) is extended
Tetrahedronal

to
three — dimensional problems . elements
are employed to discretize the flow domain . The finite ele-
ment mesh is fixed in time. The algorithm for solving the
pure convection problem involves tracing the character-

istic lines backwards in time from a vertex of an element
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to an interior point which is in the same element . A
cubic polynomial is used to interpolate the concentration
in an element using the values of concentration and its
higher derivations at nodal points . For the pure diffu-
sion problem an explicit finite element algorithm is em-
ployed . Since the values of first and second derivatives
of the concentration are needed in the interpolation proce-
dure , a similar set of initial value problems for these
derivative must also be solved using the same opera-
tor —splitting algorithm .

Numerical results are obtained for two problems
with uniform flows. Agreement between the numerical so-

lutions and analytical solutions is good.

GOVERNING EQUATIONS AND OPERA-
TOR - SPLITTING METHOD

The transport equation for a three— dimensional

convection —diffusion problem can be written as :
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where C denotes the concentration of a dispersive sub-
stance and (u, v, w) repesent the flow velocity compo-
nents in the(x, y, z) —directions , respectively. The

dispersion coefficient tensor can be expressed as :

Du D)Ly Dn
D= | Dy, D, D, (2)
- D D, D,

which is, in general, a function of the velocity field. In the

present study, the velocity components assumed to be




known and are not affected by the changes in concentra-
tion.

The solution for the concentration is sought in a
region Rbounded by boundaries I, The initial condi-
tions are specified as:

C(%Yy,2,t=0)=C,(x,y,z)inR andonT. (3)
Two types of boundary conditions are used . Along the
inflow boundaries ,I" , the time history of concentration
is prescribed , i e. ,

C(x,¥,2,t) =I(x,y,21),along T, (4)
Along the outflow boundaries, the normal derivative of
the concentration is given, i, e. ,

(D*VC)*n =g (x,y,2t),along T, , (5)
where fi represents the unit outward normal along the
boundary T',. If g=0, the boundary T, represents a

solid boundary and Eq. (5) becomes the no— flux condi-
tion .

An operator — splitting method is employed here to
integrate the transport equation . The numerical solution
of Eq. (1) over a time step At is obtained by two
fractional steps , each of duration At/2, seeking solu-

tions of the consecutive initial—boundary — value— pro-

blems:
1 dc dc dc dc _
2o Ve Py TV T
nAtSts(n+—; ) At, (6)
1 dc a dc dec de
e i L ap GE Lo
2 ot ox (Pegg TPegy D)
a de dec de
+ -2 S A, EE i
dy (Dy ax Dy, dy Dy oz )
a dec dc dc
= il e S el
0z (D ox *Dy dy D.. 0z ),
(n+71)At€t-.<_(n+1]At, (7)

wheren=0,1,2, ...--. . The operator — splitting method
separates the convection processes from the diffusion pro-
cesses . This allows one to choose the most suitable nu-

merical scheme for different physical processes .
NUMERICAL PROCEDURES

During the fractional step nAt<t< (n+1/2) At
only the convection is considered . The concentration is

invariant along the characteristic lines which are deter-

mined by
dx _ dy dz _
o T e T g T (8
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For the present problem , tetrohedronal elements are
used to discretize the flow domain and the element mesh
is fixed in time . There are two tasks to be performed to
find the concentration at all element nodes at t=
(n+1/2) At : (1) Find the location of an inferior point
D from which a characteristic line travels to a vertex of
the B,
nAt<t <(n+1/2) At . The concentration at point B at
= (n+1/2) At is the same as that at point D at
t=nAt . (2) Calculation of the concentration at point D

at t=nAt .
One may find the characteristic line connecting

same element , during the time interval

points B and D and the location of point D at t=nAt
by integrating Eq. ( 8) numerically. Because the location
of point D is unknown a priori, an iterative scheme is
needed. However , if the time step size and the ele-
ment size are sufficiently small , the velocity components
can be approximated as linear functions in time . Eq.

(8) can be written approximately as :

Xo=xp— 5 [ug+u}" 7]t (92)
1 A5

Yo=¥a~ - [vB+v3 VAt (90}

2=~ - [Wh+ Wy 2JAL (9c)

where the subscripts “B” and “D” denote the quantities
at point B and D , respectively , and the superscript “n”
represents the time level nAt .

Denoting (x , y , z) as the local coordinate for a
tetrahedronal element . The concentration at an interior
point is approximated as a cubic polynomial :

c=a,taxtaytaz+axitay’

ta 7 +ax’+ay +a,2+a,xy
+a,y2+ 2,2 + a,x% + 2,5y
+ayyz+ayz + a2 +agxs

+ayXyz (10)

where a,, a,, - , Ay are coellicients to be determined . For
convenience , the nodal points of the element are numbered in
such a way that the origin of the local cooridnates is posi-
tioned at the fourth node . The x— , y— , and z— axis are
parallel to the global x—, y—, and z— axis , respectively . To
determine the 20 unknown coeflicients , the concentration and
its first derivatives at each node of the elements are treated are
treated as known quantities . Furthermore , the cross deriva-
Cy» C,, C,and C,, at the origin of the local
coordinates of each element are also used .

tives ,

The governing equations flor the derivatives of the concen-
tration during the convection step can be obtained by taking
derivatives of Eq. (6). For example, to find the equation for



dC/dx one takes the derivative of Eq. (6) with Tespect to x.
Thus

& (2l
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The characteristic lines for 9C/dx are the same ‘as those
for C, which have been determined . Eq. (11) can be inte-
grated directly from point D (at t=nAt) to point B (at
t=(n+1/2)At).
other derivatives . The characteristic lines all remain the

Similar equations can be obtained for

same , but the inhomogeneous terms become more compli-
cated for higher derivatives .

For the diffusion problem , an explicit finite element
scheme is adopted for its efficiency. Within each element
the concentration is represented by :

C(x,y,2,0=3L(x,y,2)Ci(1), (12)

where L(x , y ,z) are the linerar shape functions. Consid-
er a nodal point B which is surrounded by M ele-
ments . For the convenience of discussion, without
loosing the generality , point B is designated as the node
Multiplying Eq. (7) by

L;, and integrating over an element , one obtains
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Substituting Eq. (12) into Eq. (13) yields an explicit equa-
tion for the concentration at the nodal point B at the
time step t=(n+ 1) At:
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NUMERICAL EXAMPLES

To illustrate the accuracy of the present algorithm,
numerical results are obtained for the transport of an
instantaneous point source in a uniform flow. The
computational domain is defined as 0<z<800m,
0<y<800m and 0<x<6000m. The fluid moves in the
X —direction with a speed 0.5m/sec . Thus

u=0.5m/sec ,v=w=0 (15)
Two element networks are used . The first one is
a regular mesh . The flow domain is discretized into
480 cubic elements (200™ x 200™ x 200™ ) first . Each
cubic element is then divided into five tetrahedra .
Therefore , there is a total of 2400 tetrahedronal ele-
ments with 775 nodal points . The second element
mesh has an irregular shape , but the total number of

elements remains the same .
The initial condition is given as

(x—%g) 2+ (¥~ ¥o) 2+ (2 2) 2 J
243

Clx,y,2) =cxp[

(16)
where (x,=1200m, y,=400m, 2z,=400m) are the
coordinates for the center of the initial concentration distri-
bution and o,=264 m characterizes the size of the con-
centration . The dispersion coefficients are assumed to be
zero; only the convection problem is considered . In the
numerical computations, the no—flux boundary condi-
tion is applied on the lateral boundaries. The Dirichlet
(C=0) are
up—stream and down—stream boundaries. The time

boundary conditions used on both
step At=96 sec is used .

To check the effects of different element mesh de-
signs on the solutions, numerical results using the
regular and irregular elements are shown in Figure 1.
Again, the agreement among the numerical solutions and
analytical solution is quite good .

The effects of using the cubic polynomial as an inter-
polation function for the concentration in the mehtod of
characteristics are very significant. Nnumerical computa-
tions were carried out using the linear interpolation func-
tion. Numerical results at t =9600 sec for the same
physical problem are shown in Figure 2. The numerical
results are very inaccurate; significant numerical damping
has been introduced .

In the second numerical example , the same flow do-
main and the flow field as the first example are as-

sumed . The initial concentration distribution is , howev-




er, a plane source on x=x,. Thus

_ =)

203 (17

Cy(x,y ,Z)=exp[

]

X9=1200m and ¢,=264m. The dispersion
coefficients are assumed to be

where

Du=50m2/s , DK}‘=DE=Dyz=Dyy:D22=0

Using the irregular element mesh described in
Figure 1, numerical results are obtaied at t=4800
sec. with At=96sec The agreement between analy-

tical solution and the numerical data is excellent

and is shown is Figure 3.
1.0
081
06~
c 4l
0.2
0.0 + gt
=0.2 L (= -l 1 L
1000 26un 3000 4000 5000 6000
. X0xtmy
Figure 1. Comparison between numerical results
and analytical solutions: — anslytical
solutions , + + +numerical results using
the irregular mesh , 000 numerical results
using the regular mesh .
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Figure 2. Comparison between numerical results

using linear interpolation functions and
analytical solutions for concentration at
t=9600s: — analytical solution , 000 nu-

merical data .
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Figure 3. Comparison between numerical data and
analytical results for concentration at
t=4800s: —analytical solution and
+ + + numerical data .
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