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ABSTRACT

Langmuir circulations are wind-driven convective motions
that arise in the upper layers of oceans and lakes. They are
an important mixing mechanism, responsible for an exchange
of heat and mowmentum between atmosphere and ocean. We
explore the Craik-Leibovich theory of Langmuir circulations in
a density-stratified layer of finite depth, in which the motions
With
periodic lateral boundary couditions, the problem has transla-

arise from an instability of a wind-driven shear flow.

tional and reflectional symmetry in the horizontal cross-wind
direction (0(2) symmetry). Two slightly different models for
the wind-stress on the water surface are considered.

In the first, a constant stress is applied to the ocean surface
due to the difference between ocean and air speeds. Here, the
theory does not select a width for the spacing of “windrows”
(streaks), a surface manifestation of Langmuir circulations. We
impose this width consistent with observation. We describe
numerical simulations of Langmuir circulations, and compare
them with a weakly nonlinear expansion developed near the
onset of motion. This expansion predicts, according to the val-
ues of the parameters, stable steady states, travelling waves
or modulated waves. All are found in the numerical simula-
tions in excellent agreement with the theoretical prediction. A
Takens-Bogdanov bifurcation, at which the linear operator has
two vanishing cigenvalues, organises the dynamics over a wide
range of parameter values, Another multiple bifurcation, the
simultancous overstability of two Langmuir circulation modes
with windrow spacings in the ratio 2:1. is analysed, but proves
less useful.

The second wind-stress model acconnts for the reduction
in the applied stress when the ocean surlace accelerates in the
wind direction, and predicts a finite spacing of the windrows
al onset. We discuss the linear and nonlinear selection mecha-
nisms for windrow spacing.

INTRODUCTION

We describe here two approaches to deriving models of
Langmuir cireulations (Langmuir, 1938), both hased on the
Craik-Leibovich theory of these convective motions. (Sece
Leibovich (1933) and references therein for details ol the
phenomenon.) The first approach, a weakly nonlincar the-
ory, generates a small number of ordinary differential equa-
tions lor the small amplitudes of the motions near onsel.
In the second, a small partial differential system is derived
through a shallow-waler approximation.

THE MODEL

According to the Craik-Leibovich theory, Langmuir cir-
culations arise as an instability of a wind-driven shear flow,
and result from the interaction between this shear flow and
the Stokes drift due to surface gravity waves. The motions
are assumed to be confined to the mixed layer, of finite
depth, in which the water may be density-stratified. Fqua-
tions of motion for mean flow quantities have been derived,
where the mean is taken over the short timescales of the
surface waves. Details may be found in Cox et al. (1992a)
and references therein.

Observations indicate that Langmuir circulations often
have a longitudinal lengthscale which is an order of mag-
nitude greater than their width, and so we restrict our at-
tention to motions thal are two-dimensional, that is, inde-
pendent of the wind-directed co-ordinate, a.

The basic state is a lincar velocity profile, U = ({/y +
{z/d,0,0), and a linear temperature profile, T = Ty +
T\z/d. Here, z is the vertical co-ordinate, d is the depth of
the mixed layer, and the horizontal cross-wind co-ordinate
is y. Langmuir civculations are perturbations to this basic
slale.

We shall deal in what lollows with dimensionless quan-
tities: the details of the rescalings involved are given by
Cox el al. (1992a). In particular the depth of the mixed
layer is normalised to 1, so that 0 > z > —1. The mean
ocean surface is al =z
layer al z = —1.

= 0, and the bottom of the mixed

Governing Equations For The Pertubations

The cross-wind and vertical velocities may he expressed
in terms of a streamflunction i, that is, (v, w) = (¢, —iy).
We denote the perturbation to the wind-directed shear llow

by w, and the perturbation to the lincar temperature profile
T by 0. The perturbations to the basic state are then
governed by the partial dilferential equations

(@ — V)
(0 = Vu
(9 — TV

Rh(z)uy, — SO+ hy - — PGy,
Py + hyus — arey,
hy +th, 0. — 020,

(1)

where ( = V% and V? = 4"); + % The unction h(z) is the
dimensionless Stokes-drift gradient, and we take h(z) = 1
for this paper. The parameters are: a destabilising Rayleigh
number, B = (U [u3)AU(0)/dz. thal indicates the in-
teraction between the shear llow and the Stokes drift, given
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Figure 1: Linear stability of the basic state (U, T).
R.(k) is plotted against wavenwmber k for three different
choices of parameters and boundary conditions. Curve 1
has S = 0 and simple boundary conditions from case (i).
Curve 2 has § = 0 and typical boundary conditions from
case (ii) [oy, = 0.06 and ay, = 0.28]. Curve 3 has the bound-
ary conditions (i), together with thermal boundary condi-
tions 0 =0 at z =0,-1; S = =50 < 0 so the layer is
unstably stratified.

by (U,(2),0,0); a thermal Rayleigh number, S = S¢Td% /3,
that for the present work we take to be positive, and there-
fore stabilising (warmer water over cooler); an eddy Prandtl
number, 7 = ag /iy, Here F is the coefficient of volume ex-
pansion, g the gravitational acceleration, vy an eddy viscos-
ity, and ay an eddy diffusivity of heat. For our numerical
results, 7 = 1/6.7.

Equations (1) are mathematically analogous Lo the equa-
tions of double dilfusion (Cox ¢f al., 1992a).

Linear Stability

The linear stability ol the basic state is delermined
by considering infinitesimal disturbances which are normal
modes of the form

(b, 0) = ((2), (=), 0(2)) expliky + ot).

The value of It at which the basic state becomes unstable
to disturbances of wavenumber & is denoted by R.(k). The
wavenumber for which 2.(4) is minimised is denoted by
k.

unstable as I is increased.

This is the wavenummber of the first mode to become

Boundary Conditions

The boundary conditions on =z = 0, —1 are an impor-
tant aspect of the model for Langmuir circulations. They
significantly alleet the lincar stability of the basic state
(Cox & Leibovich, 1992). Two distinet choices have been

examined, one relatively simple, and the other somewhat
more sophisticated. Fach assumes no flux of fluid through
the top and boltom of the mixed layer.

(1) The simpler choice for the remaining houndary con-
ditions assumes a constant applied wind stress al the ocean
surface, and constant stress at the bottom of the mixed
layver. The perturbations are then subject to boundary con-
ditions of no stress and no flux. In particular the x-velocity
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perturbation satisifes the boundary conditions

Ouffz=0 atz=0,-1. (2)
A consequence of these boundary conditions, in particular
of (2), is that the first mode to be destabilised has infinite
wavelength, that is, k. = 0. The same behaviour is found in
Rayleigh-Bénard convection between non-conducting sur-
faces (Sparrow et al., 1964). A typical marginal stability
curve is shown in Figure 1 (curve 1).

(ii) More sophisticated boundary conditions have been
derived that, inter alia, account for the mechanism of stress
transmission by the wind. For example, at the ocean sur-
face we impose the condition

dufdz+ aqu=0, a >0,

which recognises that the stress results from the difference
between wind and ocean-surface speeds, so that an accel-
eration of the ocean surface is balanced by a reduction in
the applied wind-stress. Similar mixed boundary condi-
tions are applied at the lower boundary z = —1, and for
. Details are given by Cox & Leibovich (1992). A conse-
quence of this improvement in the modelling of the bound-
ary conditions is that the widest modes are stabilised, and
so k. > 0. Typically, ey and the corresponding constant ap-
propriate at the bottom of the mixed layer, a;, are small.
In the limit as oy, o, — 0, k. = O(a'/*), where o = ay+ay.
Typical values of a; and a; are estimated by Cox & Lei-
bovich (1992), and a typical marginal stability curve is
shown in Figure 1 (curve 2). Note that k. > 0.

The boundary conditions described in case (i) are a
special case of the more general boundary conditions (ii),
and are given by setting e, = ey = 0.

The boundary conditions on temperature play a less
important role in selecting the width of the Langmuir cir-
culation cells. They are, however, important in determin-
ing whether convection is steady or oscillatory (¢ = 0 or
o = iw at marginal stability, respectively).

If the mixed layer is sufliciently unstably stratified then
even for ey = ap = 0 the first mode to be destabilised
may have k. > 0. In this case the thermal instability is
more important than the mechanically-driven instability.
Such an event is illustrated in Figure 1 (curve 3). Similar
behaviour in binary-fluid convection has been predicted by
Knobloch & Moore (1988).

The lateral boundary conditions are periodic in 3 with
period L. This endows the system with O(2)-symmetry.

WEAKLY NONLINEAR ANALYSIS

Boundary Conditions (i)

Here a width for the circulations must be imposed.
Square rolls with & = 7 and L = 2 (as wide as the mixed
layer is deep) have been investigated by Leibovich, Lele &
Moroz (1989), and by Cox ef al. (1992a.h).

Linear stahility analysis indicates that for slight or no
densily stratification the basic state becomes unstable to

steady convection, while for larger values of S oscillatory
convection is predicted. One particular value for the pa-
rameters, ([2,5) = (R4, 5:) = (711.64,72.01), marks the
boundary between the two instabilities, where the linear
operator in (1) has a pair of zero cigenvalues. A small-
amplitude analysis of the weakly nonlinear dynamics of
the system near this “Takens-Bogdanov™ bifurcation pre-
dicts for S > Sy stable travelling waves, stable modulated
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Figure 2: Stability of the basic state ncar the Takens-
Bogdanov bifurcation.

Oblique lines represent theoretical predictions: travelling
waves (TW) and modulated waves (MW) are predicted to
be stable in the wedges of parameter values indicated. Verti-
cal lines at § = 120,150,200 indicate where full numerical
simulations of (1) yield TW (between lower pair of “+”
marks) or MW (beiween upper pair). Agreement between
theory and simulations is best, as cxpected, near the bifur-
calion point.

travelling waves, and large-amplitude steady states as R is
increased (Cox ef al., 1992a). Figure 2 indicates the regions
in (R, S)-parameter space for which the various solutions
are predicted to be stable. Numerical simulations of the full
partial differential equations (1) near the bifurcation point
agree very well with the theoretical predictions, and are
indicated for comparison in Figure 2. In fact, when L = 2
all numerical solutions of (1) over a very wide range of
parameter values can be traced back to this multiple bifur-
cation point: the Takens-Bogdanov bilurcation organises
the dynamics.

If we impose instead the spatial period L = 4, so the
fundamental Langmuir circulation cells are twice as wide
as deep, the simultancous Hopl bifurcation of the funda-
mental (K = 7 /2) and its first harmonic (A = r) takes place
when (R, S) = (I)..5,) = (1613.3,1078.9). A weakly non-
linear analysis near this multiple bifurcation point predicts
that the only stable small-amplitude solution is a travel-
ling wave that occurs in a very thin wedge of parameter
values. This double-Hopl bifurcation does not organise the
dynamics of the system with L =4 (Cox ef al., 1992)). In-
deed we were unable to find the predicted travelling wave
in our numerical simulations of (1) due to the extremely
small region in parameter space in which it is predicted to
be stable, (However, if no-llux boundary conditions are ap-
plied at y = 0 and y = | then standing waves are stabilised
in some regions of parameter space.)

Boundary Conditions (ii)

With boundary conditions (i), a natural width, =/k.,
for the Langmuir circulation cells is indicated by the linear
theory, and so L necd not be externally imposed.

Depending on the value of the stratification parame-
ter, S, and the thermal boundary conditions. there may be

301

either steady or oscillatory convection.

Steady convection. Provided the stratification is not too
great (or if the layer is unstably stratified) then steady
convection takes place for R ~ 120, and an evolution equa-
tion for large-wavelength disturbances, valid without re-
striction on the amplitude of the motions, may be de-
rived in the physically interesting limit of small o. In
that limit, k. = O(a'/*), and an expansion in the small
wavenumber yields a single partial differential equation for
a= " u(y, z,t)dz:

Ot = —ait — ARG — ad)u + b3, (8,2)°,  (3)

where AR = (R —120)/120, and the constants @ and b de-
pend on the thermal boundary conditions and S/7. When
S5 =0,a=1091/5544 and b = 155/126 (Chapman & Proc-
tor, 1980). If S is sufficiently negative (so the basic state
is statically unstable) then @ may become negative, and
terms of order @5 must be included in (3) to stabilise the
short-wavelength disturbances.

An equation analogous to (3) has been derived for other
convective systems (e.g., Chapman & Proctor, 1980; Siva-
shinsky, 1982). Equation (3) has a Lyapunov functional
V[a] (Chapman & Proctor), and therefore the asymptotic
behaviour cannot be time-dependent. Minimising Vi) of-
fers a nonlinear selection mechanism for the wavelength of
convection.

It is easy to see directly that travelling waves are for-
bidden as solutions of (3), for if @(y,t) f(n), where
n = y — ct, then, multiplying (3) by f’, integrating over
the interval 0 < y < L, and applying periodic boundary
conditions, we find

— " =o.

Therefore either [ is trivially zero, or ¢ = 0.

We have integrated (3) numerically with periodic bound-
ary conditions on an interval 0 < y < 100, using a spectral
code. We find that there may be multiple stable steady
states. For example, with typical values for a; and ay (0.06
and 0.28, respectively), no stratification, and R = 208 (so
AR = 0.73) we find that the solutions with between 10 and
17 pairs of Langmuir circulation cells are all stable to small
disturbances. In this example, the Lyapunov functional is
minimised for the solution with 13 pairs of cells, which
corresponds to a “preferred” wavenumber of k = 0.8168.
Linear theory gives a critical wavenumber for the onset of
convection as k. = 1.146, so the nonlinear theory predicts
wider Langmuir circulation cells than the linear.

Figure 3 compares the computed Nussell numbers from
(1) and (3) with e, ay = 0.01. The Nusselt number
is a dimensionless quantity that measures the heat trans-
port across the ocean surface—when there is no convection
Nu = 1. The lincar results are captured very well: from
(1) we obtain k. = 0.5604 and [, = 135.788, while from (3)
the corresponding values are 0.5646 and 135.057. In this
example, the one-dimensional model (3) tends to underes-
timate the critical Rayleigh number R, of the full system,
and to overestimate the heat transport.

Oscillatory convection.
ditions are of no flux,

90/d: =0

and § > 1207%/(1 — 7), an oscillatory (1lopf) bilurcation
occurs in (1) for 2 ~ [{y, = 120 + 1207 + S. The long

When the thermal boundary con-

at z=0,-1,
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Figure 3: Plot of Nu—1 against R for the unstratified case,
§=0;
The upper curve is given by the model (3), while the lower
curve represents numerical integrations of (1). [o, = ay =
0.01.]

wavelength of the motions may be exploited to derive a
pair of evolution equations for @ and 0 = [° 0(y,z,1)dz
near this bifurcation:

—7(1+X) 8517 + TSaﬁé — all — /_\.Rajﬁ

ﬁt —
— i + 6020 + 7ed, {[8,(Rott — SO)0,1}
0 = —(1+7(1+35)da+r(1+5)d20 — ARd

— adii + b9y0 + cdy {[9,( Rot — S0)]%0,0} .

The coefficients are

{5307% + 16217 + 1091

* = P51
+ (49977 + 10917 + 31) + 3L (1 — 1)}
. {l(i527'—317'2+311'3r(1—r]}
5514
31
T 3623807

where AR = (R — Ry)/120 and § = 1207, These cqua-
tions admit both travelling and standing waves. We exam-
ine here the TW. These take the form @ = f(y), 0 = g(n),
where ) = y — pt. Near their bifurcation from the basic
state, the T'W are approximately sinusoidal,

F) ~ Fe™ pce gly) ~mFe* 4 ce.,

where

"".1 = n/(n — b).
[HU — 120 + IQOf]J//\'C] 18,

[S(1=7)/120 - 72] 2

m

~

po~
A weakly nonlinear expansion of the solution, to be pulb-
lished in detail elsewhere, shows that the amplitude of the
TW satisfies

=K.

A AT g
|I [ IQOAf(’R(](l = T).

where
R, = Ro + 240y/a(a — b).

We see that the bifurcation is supercritical (that is, there
are TW for R > R,).

These expressions are valid provided ¢ — & > 0, that is,
provided either 5307 — 31 < 0 or

(1 4 )(5307 + 1091)

B2 107 (1—7)(530r —31) '

CONCLUSIONS

We have described two approaches to deriving models
of nonlinear convection according to the Craik-Leibovich
theory for Langmuir circulations. In the first an aspect
ratio for the cells must be chosen, while in the second the
model itself selects the aspect ratio. The assumption that
k is small in the second model proves in practice not to
be too restrictive because the results derived under this
assumption are quantitatively accurate even for moderate,
and realistic, values of the horizontal wavenumber (see Cox
and Leibovich (1992) for more details).

We have given partial differential equations for both
steady and oscillatory convection under a small-wavelength
assumption. Near the steady bifurcation, travelling waves
are forbidden as solutions of the nonlinear evolution equa-
tion, but they may occur at the oscillatory bifurcation,
where they are supercritical. It remains to be determined
whether travelling waves or standing waves are preferred.
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