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ABSTRACT

When a rotating fluid over sloping topography is
uniformly cooled from above, convection cells aligned with
isobaths develop. We refer to these cells as topographic
Hadley Cells. Sinking occurs in small cyclonic vortices
situated in relatively shallow regions. This is balanced by
slower upwelling in adjacent deeper regions. The cross-
isobath motions which connect the upwelling and
downwelling are accelerated in the along isobath direction by
Coriolis forces. The cells are therefore characterized by
strong isobathic jets which are found to be unstable. For
anti-clockwise rotation the surface jets keep the shallows to
their left when looking in the direction of flow. A linear
inviscid theory is presented which predicts the surface
velocity, density distribution and size of the cells.
Laboratory experiments provide preliminary support for the
theory. Topographic Hadley cells may be an important mode
of heat (or salt) transfer in continental shelf and slope seas
where surface cooling (or evaporation) drives convection.

INTRODUCTION

Il a fluid of varying depth is uniformly cooled from
above, the coldest fluid will be produced in the most shallow
regions due to the smaller heat capacity per unit arca. This
can result in the development of convection cells
characterized by downwelling in shallows balanced by
upwelling in deeper regions. In this way heat is transfered
from deep to shallow regions. II the [Tuid is also rotating,
the horizontal motions within the cell will be accelerated by
Coriolis forces. This is illustrated schematically in Fig.1.
As relatively warm fluid nears the free surface and begins to
move toward the shallows, it will be accelerated to the right
(anti-clockwise rotation), thus forming a zonal along isobath
jet which keeps the shallows to its left. The bottom [low will
similarly form a jet in the opposite dircction, co-directional
with topographic Rosshy waves. These motions will not
necessarily be purely baroclinic, since Ekman [riction may
signilicantly modily the bottom (Tow.

The convection cells can be readily reproduced in the
luboratory. Fig.2 shows a rotating hemispherical bowl,
containing water cooled at the [ree surlace and insulated
below.  The surface flow is visualized by a streak
photograph of floating aluminium powder. The ow is
dominated by highly unstable anticyclonic (clockwise) jets,
separated by rings ol small cyclonic (anti-clockwise)
vortices. The vortices Form the downwelling component of
the convection cells, carrying cooled surface water
downward in spiralling motions to the bottom. These
structures are closely related to those observed in rotating
Bénard convection experiments over a (lat bottom (Bouhnov
and Golitsyn 1986, Chen et al. 1989, Fernando et al. 1991).
Without topography, downwelling in cyclonic vortices is
surrounded by anticyclonic upwelling motions. However,
with the addition ol topography as in Fig.2, upwelling
oceurs in adjacent deeper regions where it generales the zonal
jets.
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z=-H(x)

Fig.1. A schematic representation of the convection cell.

Fig.2. Surface flow in a bowl of water cooled from above.
The bowl was 46cm in diameter at the free surface and the
maximum fluid depth was 1lem. The rotation rate
corresponded to f = 1.4s7! and the temperature difference
between the air and water was 12°C.



There exists a close dynamical analogy between the
formation of zonal jets over topography and the formation of
the jet stream by the atmospheric Hadley cell (Held and Hou
1980). For this reason we refer to the convection cells as
topographic Hadley cells.

CONDITIONS FOR CELL GENERATION

To understand the conditions under which topographic
Hadley cells might develop, consider again the system
shown in Fig.1. Assuming that gradients along isobaths are
negligible, the heat equation in the shallow region (denoted
by subscript s) can be written
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and similarly in the deeper region (denoted by subscript d)
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Here T is the temperature, u is the cross isobath (x) velocity
component, H is the depth, Q is the surface heat flux, p is
the density and c is the specific heat. The horizontal
transport associated with turbulent processes, such as
convective vortices, is conveniently characterized by a
constant diffusivity k.

If the fluid is cooling uniformly, such that the horizontal
temperature gradients are steady, then 9T /0t = T4/t and (1)
and (2) can be combined into a single equation. If there is no
Hadley cell, then the advective terms are zero (u = () and we
are left with a balance between surface cooling and horizontal
diffusion:
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However, if the heat flux term exceeds the diffusion term,
then the advective tlerm must make a contribution through the
formation of a Hadley cell. For uniform surface flux
(Q=Q4=Qy), the condition for the formation of a cell can
therefore be written in scaled form as
2
- pcpkH AT . @
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Here H is the mean depth scale, AT = Ty - T is the
temperature drop across the cell, B = (Hy - Hg)/Ax is the
slope of the topography and Ax = x; - X, is the width of the
cell. Relation (4) has little predictive power since the usc of
simple diffusion may not be appropriate and x is in any case
poorly constrained. However, the [unctional form of (4) is
valid and can provide insight into the influence of the various
parameters. In particular, a cell is unlikely to form in a very
deep region or where the slope is very gentle. In both cases
significant horizontal tcmperature gradients cannot develop
from uniform surface cooling.

THEORY

The dynamics of the convective vortices which form the
downwelling arm of the topographic Hadley cells are
turbulent and non-hydrostatic, making theoretical progress
beyond lincar stability analysis particularly difficult
(Nakagawa and Frenzen 1955, Chandrasekhar 1961). In
contrast, the jet regions are less thermodynamically active
and are likely to be near hydrostatic balance. They may also
be assumed to be dominated by a geostrophic balance in the
cross-stream direction. These assumptions will now be
ulilized in a lincar inviscid theory which predicts the free
surface velocity distribution, the depth averaged density
distribution and the size of the cell.

Consider again a cell like that in Fig.1 with no isobathic
gradients. The cross isobath (x) momentum balance is
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geostrophic,
(%)

while the vertical (z) momentum equation for hydrostatic
Bousinesq flow is

(6)

Here, v(x,z) is the along isobath velocity, p(x,z) is the
pressure, P, is the mean density, g is the gravitational
acceleration and f is the Coriolis parameter. Our third
assumption is that the surface flow is inviscid so that the
angular momentum per unit mass,

M =1 fx2 + vx, )
is conserved.

If the cell extends across isobaths from x = x4 to x = x4,
then (7) implies immediately that the surface velocity is

_ fxd X(I X
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while bottom friction should ensure that
v(x,-H) « v(x,0) . ©)

The surface velocity is plotted as a function of position in
Fig.3. Warm fluid surfaces with zero horizontal velocity at
X = Xg, then accelerates zonally as x decreases. It finally
sinks at x = xg where the maximum velocity is
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Fig.3. Non-dimensional zonal velocity as a function of cross
cell coordinate. The (Tuid depth increases with increasing x.

Eliminating the pressure term from (5) and (6) to produce
the thermal wind equation, then integrating from the hottom
#=-H(x) to the free surlace z = 0, yields

F(000) - vx-H)) = - ghg, an

where H is the mean depth of the cell and the non-
dimensional depth averaged density distribution is defined by

0
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Since p,, is the mean density of the cell, we can also write

_[Xdc dx = Ax.
%
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(13)

Utilising the boundary conditions (8) and (9) in relation (11),
then integrating from x to x4 yields an expression for the
depth averaged density distribution,

% px? X
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dv 4 {xd2 n("d) } (14)

where 64 = 6(xg) and y = f2x4%gH. The density distribution
is plotted as a function of position in Fig.4. The density
increases with decreasing x until sinking occurs at a critical
density o = o(xg).
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Fig.4. Depth averaged density anomaly as a function of
cross cell coordinate. The fluid depth increases with
increasing x.

It is now convenient to introduce a non-dimensional
coordinate x* = x/xq. Equations (13) and (14) can then be
rewritten in the respective forms

I

[, o dxx=axx, (15)
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where x* = x¢/xgq and Ax* = Ax/x;. Substituting (16) into
(15) yiclds
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which when substituted back into (16) gives,
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If the location ol both sides of the cell are known, then (18)
can be used to caleulate the density distribution.

If the density change across the cell is defined as
Ao = 0, - 0, then equation (16) gives,

Ao =% {2 2m( - axy-2ax}, (19)
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where we have substituted xg* = 1 - Ax*, The power series
expansion

In(1 - Ax*¥) =- Ax*[1 + 1 Ax* + O(Ax*2)], (20)
when substituted into (19) yields
IAGI/2
Ax* = (—"] @
X

to O(Ax*2). In dimensional form, (21) corresponds to a cell
width of

Ax = 2112R (22)
where
/2
R = (-gﬁj‘,@ (23)

is an internal deformation radius based on the depth averaged
horizontal density change and average depth of the cell. Note
that the width of the cell depends on the detailed topography
only through Ac and H.

EXPERIMENTS

A preliminary series of laboratory experiments have
provided an initial test of the theory. A shallow bowl of
80cm diameter (larger than that in Fig.2) was filled to a depth
of 15cm with water warmer than the laboratory environment
by AT = 15°C. The outside surface of the rotating bowl was
insulated, while cooling was allowed at the free surface. The
flow was visualized using aluminium powder and still
photographs similar to that in Fig.2 were recorded. This
method does not provide accurate velocities, but did reveal
cell widths and demonstrated qualitatively that the jet velocity
increases towards the shallows as suggested by relation (8).

The width of the zonal jets were measured at eight evenly
spaced locations along their circumference. The mean jet
width and its standard deviation is plotted for a range of
rotation rates in Fig.5. The cell width is non-
dimensionalized by R, which was calculated using Ac =
AT, where o is the coefficient of thermal expansion. It
seems reasonable to assume that Ao from the theory will
scale with this quantity, although this point is under further
investigation. The plot indicates that the cell width scales
with the deformation radius in accordance with (22) over
most of the parameter range. The only exception is an
experiment in which the deformation radius was comparable
to the radius of the bowl L. In this case Ax* = O(1) and
higher order terms in (21) cannot be neglected. From a
physical viewpoint, the width of the cell was constrained by
the finite size of the bowl.
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Fig.5. Non-dimensional cell width as a [unction of basin
radius (non-dimensionalized by R).



Fig.2 also demonstrates that the zonal jets could be highly
unstable. Waves were first evident when R ~ L and became
progressively more nonlinear as R decreased. The
wavelengths of these features were often difficult to measure
because of nonlinear interactions, but like the current width
appeared to scale with the deformation radius. WhenR « L,
all measurable wavelengths lay in the range (1.4i0.3)1€.
This value decreased to (0.7+0.1)R when L /R = 0.7, a
similar reduction to that of the current width.

In a second series of experiments, azimuthal velocities
were measured with a laser Doppler velocimeter (LDV).
These were conducted in the smaller bowl shown in Fig.2.
The experiment differed from those described above in that
the surface was cooled by a cold water bath, separated from
the flow by a thin plastic film which was transparent to the
LDV. Submerging the head of the LDV in the cold bath,
while focusing it in the experimental flow, avoided problems
associated with focusing through a free surface.

Fig.6 shows examples of instantaneous and mean
azimuthal velocity distributions across the radius of the bowl
(3cm below the rigid surface film). The smoothed
instantaneous signal (Fig.6a) corresponds to a single
continuous transect with a spatial resolution of approximately
0.01R. The mean values (Fig.6b) were calculated from
stationary readings taken over a 200s period with a maximum
sampling frequency of 15 per second. The error bars on
these values correspond to one standard deviation in the
natural variation of the signal.

The instantaneous signal is chaotic, however, there is
distinct structure evident on the deformation radius scale.
Another transect higher in the water column (not shown)
suggests that this structure diminished with depth. The range
of velocities also decreased with depth, although the
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Fig.6. Non-dimensional radial distribution of azimuthal
velocity. Measurements were taken 3cm below the surlace in
a flow with a maximum depth of 14em. The rotation rate
was = 1.0s"! and the temperature difference between the
cold bath and working [luid was around AT = 7°C.
(2) Instantancous velocity distribution after simple boxcar
smoothing. (b) Mean velocities at six different radii fitted by
a cubic spline. The crror hars represent one standard
deviation in the measured velocitics.
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maximum speed 1.5cm below the lid was still much less than
FR. There is no clear net transport evident in Fig.6a,
suggesting that much of the signal is generated by turbulent
vortices. In contrast, the mean ficld in Fig.6b reveals
significant anticyclonic (clockwise) transport at this depth.
As a result of the radial meandering of the jets, the mean
velocity tends to be broadly distributed over the bowl radius.
The experiments appear to provide preliminary support
for the theoretical arguments and reveal additional features
not included in the simple theory. Further experiments
involving detailed temperature and surface velocity
measurements should provide more definitive tests.

DISCUSSION

Topographic Hadley cells have been analysed under
assumptions of hydrostatic flow, geostrophy and inviscid
surface flow which conserves angular momentum. This
yielded cell characteristics such as the surface velocity field,
depth integrated density field and cell width. Preliminary
laboratory experiments confirm that the cell width scales with
the internal deformation radius and further show that the
wavelength of jet instabilities obey a similar scaling.

To extend the present theory to include frictional effects
would require a full numerical solution. However, there are
a number of logical consequences associated with increasing
the fluid viscosity. Firstly, the laboratory experiments
demonstrated that the zonal jets are very unstable and we
would expect that friction may significantly modify the
growth rate of these waves. Secondly, friction would tend to
break the angular momentum constraint, thereby reducing
zonal jet velocities and allowing the cell width to increase
beyond the inviscid values. This type of behaviour has been
observed in numerical solutions of the atmospheric Hadley
cell (Held and Hou 1980).

Topographic Hadley cells may be important in continental
shelf and slope seas where surface cooling or evaporation
drive convective ovcr[urninirz. _Over a shelf region with
typical parameters f = 10*s”], H = 200m and Ac = 103,
relation (22) predicts cell widths of 20km, while relation (10)
gives a maximum jet velocity of 2ms™! (neglecting the
O(Ax/2xg) term). The cells should be easily distinguishable
from surface flows driven by along-shelf density gradients,
since these keep the coast to their right in the Northern
Hemisphere. We will be attempting to identify topographic
Hadley cells in archived field data.
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