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1 Introduction

A technique for generating local solutions of the Navier-
Stokes equations using Taylor-series expansions to arbi-
trary orders is described in Perry (1984) and Perry & Chong
(1986a) (details given in Perry & Chong, 1986b). The
technique provides a simple method of synthesizing and
generating steady and time-dependent flow patterns which
are asymptotically exact at the origin of the expansion.
The method is useful for investigating the properties of
the Navier-Stokes equations and the topology of complex
flow patterns. For example, Danielson and Ottino (1990)
applied the Taylor-series-expansion method to the study of
chaotic particle trajectories (Lagrangian turbulence). The
usefulness of the Taylor series expansion method relies on
the generation of the relationship between the coefficients
of the expansion from the Navier-Stokes equations. Per-
ry (1984) used tensor analysis to generate the necessary
equations. The algorithm described, although elegant and
rigorous, is difficult to follow and complicated to use and to
convert into a computer code for generating the neccessary
relations. For example, one of the rules from Perry (1984)
is: In each tensor combination {JY{ '}, ¢ alweys leads the
indices of one tensor and i always leads the other. There
are ehways two ¢'s and they never oceur together in the one
tensor. Whenever there is an i in a tensor il must always
be accompanied by a q. The free indices i, ov. 3, &, must be
cycled — —. A simple algorithm is described in this paper
for generating the relevant continuity relations and Navier-
Stokes relations'. The relations are *almost analytical® and
can be used to generate all the necessary relations for the
series-expansion solution ol the Navier-Siokes equations.

'Note the use of relations and cquations. Relationships hetween
the coeflicients of the expansion such that the continuity equations
are satisfied will be referred to as continuity relations. A similar
convention is adopled for the Navier-Stokes relalions as distinet [rom
the Navier-Stokes equafions.
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2 Theory

2.1 Basic Equations

The Navier-Stokes equations for incompressible, constant
density flow can be expressed as

oo, o 0P
at ﬂjamj_ Oz; Oz;0x;

where P = p/p is the kinematic pressure, p is the pres-
sure, p is the fluid density, v is the kinematic viscosity, u;
is the velocity tensor and z; is the space coordinate tensor.
The continuity equation is

(1)

Ou; ”
et (2)
The velocity field can be expanded as
N
wi =Y Rulai by, o a5 2§ (3)
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where [a;, b;, ¢;] represents a coefficient in the Taylor-
series expansion. «;, b; and ¢ are the powers of of 21, 2
and z3 respectively and are used to index the coefficients
of the expansion. N is the highest order of the expansion.
For each n, a; + b; + ¢; = n, such that a;, b; and ¢; are in
every possible permutation and combination. It can been
shown that the R’s are factors which allow for the different
permutation of the indices ( Perry & Chong, 1982 %) and
are given by

(et by +3)!

a;'bile;!

R = (4)

The velocity expansions are shown in tabular form in
Table 1.

2The analysis can be carricd out without this constant. Towever,
this has been included so that the relations generated are consistent
with the relalions given in Perry & Chong(1986).



Uy = Ug = Uz =

1 |[0,0,0] 0,0,0]2 [0,0,0]3

2 | +[1,0,0], +[1,0,0] +(1,0,0]s
3 | +[0,1,04 +[0, 1,0}z +{0,1,0]5
4 +[05011]1 +[0v071l2 +[05011]3
5 | +[2,0,0], +[2,0,0], +[2,0,0]3
6 | +[0,2,0], +[0,2,0], +10,2,0]s
7 | +(0,0,2], +[0,0,2]; +[0,0,2]a
8 | +2[1,1,0] +2[1,1,0] +2[1,1,0]5
9 | +2[1,0,1]; +2[1,0,1], +2[1,0,1]s
10 | +2[0,1,1); +2[0,1,1], +2[0,1,1]5
11 | +[3,0,0} +(3,0,0], +(3,0,0]3
12 | +[0,3,0], +[0,3,0), +[0,3,0]s
13 | +[0,0,3]: +10,0,3], +[0,0,3]3
14 | 4+3[2,1,0} +3[2,1,0]; +3[2,1,0]5
15 | +3[2,0,1] +3[2,0,1], +3[2,0,1]5
16 | +3[1,2,0]4 +3[1,2,0), +3[1,2,0),
17 | +3[1,0,2], +3[1,0,2], +3[1,0,2]5
18 | +3[0,2,1], +3[0,2,1], +3[0,2,1]5
19 | +3[0,1,2], +3[0,1,2], +3[0,1,2]5
20 | +6[1,1,1] +3[1,1,1]; +3[1,1,1)s

+Rlay, b, er]y | +Rlaa, by, e2]z | +Rlas, ba, esla
TABLE 1

2.2 Continuity relations

Differentiating the velocily expansions for uy, uy and us
with respect to z1, 23 and w3 respectively, substituting into
equation 2 and grouping coefficients of like powers of xy,
29 and 23, the continuity relations can be shown to have
the following simple form:

[(Ll, IJ[, C]]] + [t‘-ﬂg, (12‘ ('2]2 + [(i‘_]. [13, (.':;}::\ = 0. (F))
where
ay =y — 1 Uy = iy — i
by = b + 1 by=b (6)
3= ca =0+ 1.

Hence the continuity relations can be easily generated
by considering each coefficient of the uy velocity expansion
(column 2 of Table 1) and equating them to coellicients of
try and vy using the above rule (and noting that the indices
cannol have negative values). For example, for coellicient
[2,0,1]y, the continuily relation is given by

B0 4+ [0 + [1.0:2 =0

(7)
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2.3 Navier-Stokes Relations

The Navier-Stokes relations are obtained from equating
cross-derivatives of pressure and grouping coefficients of
like powers of z;, 3 and 23. The Navier-Stokes equations
can be written as:

oP Bu,-
B_m',- - E'-F[L]*[V,]

(8)

where 24 are the time-dependent terms, [I;] represent
inertia terms and [V] represent the viscous terms.

The Navier-Stokes relations are obtained by equating
the cross-derivatives of pressure, i.e.

a oapP

2. 2E d dP
a.'l?j 3:[!,‘

= 3575,
(9)

and matching the powers of @1, ¥, and a3 of the inertia
terms and the viscous terms to those coefficients which
appear as time-derivatives in the Navier-Stokes relations.
The coefficients which appear as time-derivatives can be
obtained by differentiating the expansion for w, uy and
uz with time and equating cross-derivatives of pressures as
given by equation 9, i.e.

ot

o a b o
= R.[ei b e)ixt’ 2y 23

(10)
where the dot above the coeflicient denotes the deriva-
tive of the coefficient with time. The relationships between

the time-dependent coefficients in the Navier-Stokes rela-
tions are given by:

[a1, by, er]i—[az, {J;,Cg]g = [Inertia terms]+[Viscous lerms),

(11)
where
a; = a3+1
by = b —1
2 = 0 (12)

[a1, bi,er]i—[aa. by, 3]y = [Ineriia terms)y+[Viscous termsls

{13)
where
a3 = ap+1
by = b
3 = ¢ — 1 (14)



and

[a2, by, €2 —[as, by, cs]s = [Inertia terms]s+[Viscous terms]s

(15)

where
az = a3
b3 = b'z + 1
g = 6—1 (16)

From equation 11 and 13, it can be seen that all coeffi-
cients of ug, i.e. [ay, by, ¢1]i , will appear in a Navier-Stokes
relation except when b; = 0 and ¢; = 0. Also, if by # 0 and
¢ # 0, then equation 15 will give a redundant relationship.

Once the coefficients which appear as time-derivatives
have been obtained, the viscous terms and the inertia terms
can be obtained since these must include coefficients such
that, after the various diffferentiation and multiplication
processes, the powers of 1, 22 and z3 are the same as
those coefficients which appear as time-derivatives.

For example, to be compatible with the coeflicients
which appear as time-derivatives the viscous terms in
equation 11 are given by the following simple form:

[Viscous terms]; =
vF {lawvqaz) bivazs avanl + laviez), bives), erviah
+ [G1V(32)15:v'(32)a 1 V(az)]l - [“w(n), b'ZV[]]}a Czl"(n)]a
= [agviany, baviznys eavienl — [eaviay, bav(31)s Cav(an))2}

(17)
where
aviz) = a1+ 2, bz = b,
biviozy = b + 2,
bn'(a-z) — hh

civ(12) = 1
Cvizz) = G
evE) = G+ 2

Ayv(22) = U1y
apv(sz) = ai,

agvany =@+ 3, bavay = by = 1,
agviay = ap + 1, bavey =bi+ 1
Gavany = a1 + 1, bayany = b -1,

Cav(11) = €1
Cov(21) = €1
Covpy) =Gt 2

(18)
The factor F can be shown to be given by:

F=(n+1)n4+2) (19)
Similar expressions can be derived using the above
method for the viscous terms in equation 13 and equation 15.
A similar analysis can be carried out for the inertia
terms. Again simple expressions can be obtained between
these nonlinear terms. For example the inertia terms in
equation 11 must be in the lollowing lorm:

[[nertia terms], =

0‘112-[0”4(12)‘ "M.L(r.ayfll.(rj)]l-[“zl!(u}- bll-’(lz)-"l(f(|2]]1
ﬂmz-[‘nl,(lzhhlL(u)\f‘u,(|z)1l-["-zm12)~ "ul'(|z)-f'-zr'(1-z)]-z
ﬂ'l:i'z-[“-IL(IZ]abl[,(l?]-riL(l2]]]-[”.’H-’(]2)« f?:sumh(';srf[12ﬂ:a
3 u-[”zr.m]- (*zr,(n)- f‘zf.(llﬂz-[fmrm]« hlfc‘(ll]ﬂ'li’(ll]]l

.Hl'.!]-[”‘lf.{ll)! 1’2!.:11]~ ('2."(11)]2-[“21-‘(11)« 1’21’(11)- ('21'(11)]2

+ + +

ﬂi:n -[“2.’.(1 1) b-u.(n). CaL(n )]2-[f':w(| 1)+ h;'.!’(l 1)s Car(1 |)]:s
(20)
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where

a1u(12) = @1 — Gig(iz) + 1,
Qar(12) = 41 — Q1r(12),
azy(12) = @1 — @1L(12),
Ciu(12) = &1 — G1L(12)
CaU(12) = &1 — G1L(12)
cauy) = @ — Gz + 1
a1y = 61— Gapn) + 2,
aau(n) = @1 — dar(11) + 1,
azy(11) = @1 — Gap(11) + 1,
ciw(11) = ¢ — C2r(11)
Cayi(11) = €1 — C2L(11)
eay(1) = €1 — C20(11) + ]

biyaz) = b — binga,
by = b — biraz + 1,
bay(2) = b1 — birqiz)s

by = b — bargny — 1,
bayan) = b1 — barqiny,
bap11y = b1 — bapany — 1,

(21)

Hence to match all the uy coefficients which appear as
a time-derivative (i.e. for a given [a;, by, ¢1];), and for each
[alf..(l.?)sblL(lZ):CIL(IZ)]l and [aeL(m,sz(u},CzL(n)]za
the above algorithm can be used to generate all the non-
linear inertia terms. Simple expressions can be found for
the factors a@’s and ’s which appear in the non-linear
terms. For example, a1 is given by

aiz airaz) X (g + bivae)

(@1L(2) + bizpz + cian)!

(alL(l‘))!blL(IZ)!ClL(IZ)!)
(a1r012) + binae) + o)
(ﬂlL(IZ]!blL(l‘Z)!ClL(H)!)

(ar!bley!) 1

(@+bta) b

Similar simple algorithms can be developed for
[Inertia terms]y and [Inertia terms];

3 Applications

The above analysis shows that it is possible to develop a
simple algorithm for generating the relationships between
the coeflicients of a Taylor series expansion so that they
satisfy continuity and the Navier-Stokes equations. The
Navier-Stokes relations are first-order ordinary differential
equations for some of the coeflicients ol the expansion.
These can be used to compute the evolution of the co-
elficients (and hence the flow pattern) in time-dependent
problems.

The above technique can be used to obtain local so-
lutions of the Navier-Stokes equations. Ixamples of the
use of the above technigue for generating steady three-
dimensional separation patterns are given in Perry & Chong
(1986) and for generating time-dependent three-dimensional
separation patterns in Chong & Perry (1986) and in Chong
& Perry (1989). A further improvement of the technique is
the extension of the region of accuracy of the solution by
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Figure 1. Two-dimensional separation bubble generat-
ed using 3rd order expansion. (a) Separation bubble ob-
tained from a single expansion at Q. (b) Separation bubble
obtained from two expansion (al O and O') with malching
boundary conditions across A4 — A.
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matching boundary conditions for several series expansion.
In the example shown in figure la, the two-dimensional
separation pattern has been obtained by an expansion about
the origin O. It can be seen that away from the origin,
the flow is unrealistic. However, it is possible to generate
another expansion about O’ such that the boundary con-
ditions are matched across the boundary of the two expan-
sion, i.e. along A— A. This produces a flow pattern, shown
in figure 1b, which is more consistent with a two dimen-
sional separation pattern. Further work on the extension
of the region of validity is currently being investigated.

4 Conclusion

A disadvantage of using Taylor-series expansion for gen-
erating local solutions of the Navier-Stokes has been the
difficulty in generating the necessary relations between the
coeflicients of the series expansion so that they satisfy the
Navier-Stokes equations. A simple algorithm for generat-
ing these relationships is described in this paper.
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