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SUMMARY

Numerical simulations of vortex dipoles have been performed
in order to examine which functional relationship w = f(3)
they assume at the steady state. The w, ¥»—relationships of the
various dipolar structures are compared with that of the non-
perturbed Lamb dipole, which serves here as a reference. We
have found that the entropy, defined by Robert and Somme-
ria (1991), is a global quantity which characterizes the steady
state very well. As a more realistic perturbation the case of two
dipoles colliding at a certain angle has been considered. With
this case it is possible to explain certain features observed in ex-
periments by van Heijst and Flor (1989,1992) and in numerical
simulations by Montgomery et al. (1992).

INTRODUCTION

Vortex dipoles are common features of geophysical flows,
and they play an important role in their dynamics. In the
ocean, dipolar vortices may be generated in various ways
(e.g. as a result of shedding [rom unstable boundary cur-
rents or due to localized wind forcing) and they provide an
important mechanism in the transport of physical prop-
erties (heatl, pollutants). In the atmosphere, dipolar flow
structures in the form of blocking systems tend to have a
stabilizing influence on the local weather. Within the con-
text of stability of such How structures, it is important to
know whether the structure, once perturbed, relaxes to-
wards its initial (stable) state. It is casy to show that any
functional relationship w = [(y*) between the vorticity w
and the streamlunction ¢ satislies J(w, ') = 0 and is thus
a stationary solution of the inviscid Euler equations. In the
present study we consider the Lamb dipole, which travels
with a constant velocity while preserving its shape. For this
dipolar vortex the relation between w and v in a reference
frame travelling with the dipole. is linear. i.e. w = k%),

Analytical approaches based on linear approximations
are not very helpful to study the stability of dipoles, as it
has recently been shown by Nycander (1992) for modons,
which are quasi-stationary dipoles on a beta-plane. Numer-
ical approaches are more useful. because different types of
perturbations can be artificially imposed to see whether
the dipole relaxes to a new steady configuration and., if so.
which functional relationship f(v) is vielded. 1t is of fun-
damental importance to know the global quantity which
Usually.
numerical simulations are based on schemes that conserve

actually characterizes the steady confliguration.

both energy and enstrophy, and the check of the preser-
“vation of these quantities for the Euler equations is then
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meaningless, of course. Recently Sommeria ef al. (1991)
used the entropy, defined by Robert and Sommeria (1991)
to study the evolution of a mixing layer. In the present
work, we have considered a Lamb dipole subjected to dif-
ferent types of perturbations in order to examine which
functional relationship is finally reached, and it is found
that the entropy defines the achievement of the steady state
satisfactorily. Also, it has been found that the changes of
the vortical structures at low levels of vorticity, which do
not alter enstrophy and energy, produce a modification of
the distribution of the entropy.

In the simulations it has been observed that once the
steady state is reached the w,)—relationship is piece-wise
linear, with different slopes. Near the vorticity peaks, the
slope is equal to that of the unperturbed Lamb dipole,
while the parts of the scatter plot corresponding with the
dipole’s edge and axial regions have a slope which is def-
initely different from that of the Lamb dipole, depending
on the distance between the cores of the two vortices. The
occurrence of different slopes in the relationship w = f(3))
is possibly connected with the relationships that have been
observed experimentally by van Heijst and Flér (1989,1992)
and in numerical simulations by Montgomery et al. (1992),
where a sinh relationship was suggested.

EQUATIONS AND RESULTS

We have performed two-dimensional numerical simu-
lations by solving the Navier-Stokes equations in vortic-
ity /streamfunction formulation. The calculations were per-
formed with a finite-difference scheme, as described in Or-
landi (1989). The scheme is second-order accurate in space,
it uses the Arakawa scheme for the nonlinear terms, pre-
serving energy, enstrophy and the skew symmetry of the
Jacobian in the inviscid case. A third-order Runge Kutta
scheme, with two-level storage. explicit for the nonlinear
terms, has been used [or time advancement. The equations
have been solved with a 192 x 192 grid in a domain periodic
in the oy direction (=5 <y < 5), which is taken parallel to
the translation direction of the vortical structure. In the
other direction, .ry(=5 < ry < 5), a symmetry condition is
used, with the boundaries located sufficiently far away from
the dipole to ensure that the effects ol the image dipoles
are negligible. In the inviscid case, perturbed dipoles leave
behind a certain amount of the initial vorticity, before they
reach the steady state. To avoid the collision of the dipole
with the shed vorticity present in its own wake when peri-
odically re-entering the domain from the left boundary, a
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Fig.1 Scatter plots for an unperturbed, viscously -decaying
Lamb dipole at Re = 500 fort = 0., ¢t = 12., t = 60.

Fig.2 Contour plots of entropy for an unperturbed Lamb
dipole at (a) t = 0., (b) t =11, (¢) t = 96.

cleaning procedure for the ejected vorticity has been used.
With this procedure the small-scale vorticity in the dipole’s
far wake is eliminated before the dipole leaves the domain
or re-enters it. Whenever the cleaning is performed, a new
streamfunction related only to the remaining vorticity is
evaluated.

Different perturbations on the shape of the dipole have
been considered and the evolution has been compared to
that of the Lamb dipole, which theoretically is a steady
vorticity configuration.

The Lamb dipole has an initial distribution w = k*¢
throughout the recirculation domain: the centres of the
two vortices are separated by a distance { = 1 and, in the
inviscid case, the dipole moves with a constant velocity.
Circulation, kinetic energy and enstrophy have been cal-
culated, in order to verily their preservation through the
numerical scheme. A further quantity that has been evalu-
ated is the entropy, (which is not conserved by the scheine),
as introduced by Robert and Sommeria (1991). These au-
thors related the entropy S 1o the probability ¢(x) of find-
ing the vorticity level w in a small neighbourhood of the
location x, which is ¢(x) = w/a, where a is the peak vor-
ticity of the dipole. The probability of finding the vorticity
level 0 is the complementary 1 —e(x). The entropy is given
by:

(1)

Since we are interested in {inding the steady state, the
calculations have been performed in the inviscid case, be-
cause in the presence ol viscosity the energy and Lhe enstro-
phy both decrease in time. while the entropy increases. The
proof that no steady configuration is reached in the viscous
case is given in Fig.1. This graph presents the scatter plots
of vorticity versus streamflunction for the Lamb dipole at

=0,t = 12and i = 60, showing that at each time a differ-

& - 7/(( loge + (1 — ¢)log(1 —€)) dx
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Fig.3 Percentage evolution in time for the unperturbed Lamb
dipole shown in Fig.2, circulation: — — — en-

tropy.

ent single-valued relationship is obtained and that for later
times f(¢) tends very closely to the sinh relationship which
was observed in other viscous simulations by Montgomery
et al. (1992) and in laboratory experiments by van Heijst
and Flér (1989,1992). In the inviscid case, contour plots of
entropy density o = eloge + (1 — €)log(1 — ¢) for the Lamb
dipole are represented in Fig.2 at t =0,¢ =11 and ¢ = 90.
The entropy density is formed by two contributions, which
are initially large within the dipole, in particular near the
vorticity peaks and in a small region between the rotational
and the irrotational flow. Fig.2 shows that near the vortic-
ity peaks o does not change in time, while a certain amount
of o is shed, and it is related to the low vorticity levels in
the wake. A small amount of circulation is generated dur-
ing the dipole translation and it does not contribute to the
energy and ensirophy levels. From plots of the positive
circulation it might seem that the numerical scheme does
not conserve circulation; this is not true, because the to-
tal circulation actually remains zero. [t is interesting to
observe that the entropy increases during the translation
of the dipole and that, at each cleaning of the wake, the
entropy decreases and successively increases with the same
amount (Fig.3). This mechanism persists during the whole
calculation, thus one can assess that the vortical structure
is in a steady state condition, in fact the scatter plot at
= 96 (Fig.4) follows the same functional relationship as
the one corresponding to ¢ = 0. The calculation of the
Lamb dipole has been performed to check our numerical
method and to understand how the entropy evolves.
When the centres of the two vortices are separated
by a distance [ = 2 the dipole is not any longer in a
steady configuration. At { = 0 the vorticity is not a single-
valued [unction of ¢ and, as a consequence, the dipole re-
distributes its vorticity to reach the steady configuration
(Fig.5). In fact, between { = 0 and ¢ = 11, when the
first cleaning has not been performed, there are substan-
tial changes in the contour plots of the entropy density,
which forms a large wake. Following the time evolution of
the global quantities, it is observed that the energy and the
enstrophy slowly decrease after each cleaning, due to the
small amount of vorticity shed from the dipole. A com-
parison between the entropy evolution in the unperturbed
(Fig.2) and in the perturbed cases shows that the pertur-
bation produces a large increase in the first period (Fig.5).
In Fig.6 it is seen that, at each cleaning, the global entropy
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Fig.4 Scatter plot for the unperturbed Lamb dipole shown
in Fig.2, at t = 60.
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Fig.5 Contour plots of entropy for a perturbed dipole with
a separation distance hetween the vortices | = 2.0, at

{a)t =0..(B) 1 =11, (c)t = 200.

decreases and it tends towards the condition characteriz-
ing the steady state. At 1 = 200 (Fig.7) an approximately
linear relationship is maintained in the core of the vortices,
with the same slope of the Lamb dipole, while some differ-
ences still remain in the regions between the two vortices,
where the vorticity level is low.

A further simulation has been performed with the cen-
tres of the vortices localed at a shorter distance, [ = 0.5.
The reduction in size of the dipole produces a reduction in
I, due to vorticity annihilation and consequently there is a
reduction of the energy ol the structure. Since the vortices
have the same peak vorticity as in the Lamb dipole, but lo-
cated at a shorter distance, the dipole initially travels with
a grealer velocity, but when the vorticity is redistributed
the translation velocity is immediately reduced. The [une-
tional relationship at { = 0 has a larger deformation than
it had in the previous case. This condition, far from that
of equilibrium, leads to a decrease ol the initial enstrophy
and energy, the reduction being greater than in the previ-
ous case: before the first cleaning the entropy grows very
rapidly, but it is substantially reduced after only few clean-
ing cycles. In the case ol this smaller dipole, the enstro-
phy continues to decrease and the entropy does not reach
a satisfactory steady condition, as seen in Fig.8. How-

ever, the changes in these global quantities are only few %
and are not representative of the fact that the scatter plot
at ¢ = 200 has reached a single-valued relationship which
characterizes the steady state (FFig.9). In this case it is ob-
served that the dipole has reached a configuration with a
steeper slope in the region near the axis and that the slope
near the peak vorticily is equal to that of the Lamb dipole.
A different. perturbation has been given by letling two
dipoles to collide. as was done in the experiment by van
* Heijst and Flor (1989). in which it was seen that the dipoles

69

1.5

100 150

time

200

Fig.6 Percentage evolution in time for a perturbed dipole
with a separation distance between the vortices | =

2.0: circulation , — — — entropy.

interchange partners and later on travel again along straight
trajectories. In the case of a central collision we observed
that the dipole redistributes the vorticity during the impact
and that in a short period of time the functional relation-
ship between w and @ is the same as before the collision.
More interesting is the case of dipoles colliding at an angle.
In this case, during the impact the dipoles are largely de-
formed; the internal dipole looses part of its vorticity, which
is sheared by the external dipole, as shown in Fig.10. The
numerical simulation has been performed by assuming that
the dipole is impacting against a free-slip wall. We consid-
ered the collision at an incidence of 45 degrees and we have
followed separately the motion of the two vortices, by per-
forming the cleaning as explained before. In the scatter
plots in Fig.11 (a)-(b), for the positive and negative vor-
tices, respectively, it is seen that the positive vortex reaches
a relationship similar to that obtained when the vortices of
the dipoles were separated. Besides, the negative vortex
reaches a relationship similar to that of the dipoles with a
reduced size: in this case the relationship w = f(3) shows
very clearly the piccewise-linear relationship with two dif-
ferent slopes. We wish to point out that the simulations
were performed in the inviscid case: in the viscous case,
a smoothing between the two slopes oceurs. We have not
performed any viscous simulations, because at the moment
a comparison of the present numerical simulations with the
experimental results can not be realized.

CONCLUSIONS

In the present study several numerical simulations have
heen performed (o understand the stability of vortex dipoles
by giving different perturbations to a Lamb dipole. Our re-
sults suggest that the region close to the vorticity peak is
very stable, while the behaviour in the region close to both
the axis and the edge of the dipole changes depending on
the perturbation. A fundamental question is: which global
quantity characterizes the achievement of the steady state?
For the purpose of gaining insight in this matter we have
calculated the energy, the enstrophy and the entropy. It
was found that energy and enstrophy do not change appre-
ciably, whereas the entropy is very sensitive to small losses
of vorticity and thus reaches a steady state with some os-
cillations. When this stage is reached, the w = f(¥) is a
single-valued function. In all the different cases analysed
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Scatter plot for a perturbed dipole with a separation
distance between the vortices I = 2. at t = 200.

Fig.7
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Fig.8 Percentage evolution in time for a perturbed dipole
with a separation distance between the vortices | =

0.5: circulation . — — — entropy.
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Fig.9 Scatter plot for a perturbed dipole with a separation
distance between the vortices | = 0.5 at t = 120.
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Fig.10 Contour plot of vorticity for a dipole colliding under

45 against a slip-free solid wall. at [ =3.7.
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Scatter plots for the colliding dipole shown in Fig. 10,
at 1 = 50: (a) posilive vortex, (h) negative vortex.

Fig.11

in these numerical simulations, we observed that the func-
tional relationship is piecewise-lincar, with different slopes.
Simulations were also performed in the viscous case and it
appears that the transition [rom one slope to the other is
well described by a sinh relationship, as observed in the
experiments by van Heijst and Flor (1989,1992).
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