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INTRODUCTION

The solution of free surface viscous flows is one of
the most important topics in naval architecture. The
numerical simulation of this flow field is very diffi-
cult, because of the extremely large Reynolds num-
bers in practical problems (~ 10®+10%), and the ad-
ditional complication due to the moving boundary at
the air-water interface. The solution of the Navier—
Stokes equations in the whole domain requires a
large amount of computer memory and CPU time,
while the inviscid model (although much cheaper in
terms of computer resources) is unable to mimic the
formation and growth of boundary layer and wake.

In the analysis of this kind of flows, the zonal ap-
proach concepts can be fruitfully exploited to save
both computer storage and CPU time. The full vis-
cous model is solved only in the neighbourhood of
rigid boundaries and wakes, while the external flow,
where viscous eflects are supposed to be negligible,
is sitnulated by a linearized inviscid model (Daw-
son, 1977) whose capability of representing the free
surface dynamics is generally satisfactory (Lalli el
al, 1992). The choice of the lincar model has been
made in view of the extention of the zonal approach
lo the analysis of three—dimensional flows past, ship
hulls, for which a full nonlinear solution would be
too expensive,

However, when using zonal approach, problems
related to the matching conditions for the external
and the internal solutions arise. Although the cou-
pling procedure in unbounded flows is quite well es-
tablished (see, e.g. Lock and Williams, 1987), the
use of a linearized potential solver for external free
surface flow gives rise to new dilliculties.

In the following scctions, the viscous and inviscid
solvers are brielly described. Then, the aforemen-
tioned problems in the coupling are analyzed and
a possible way to lace them is proposed. [inally
some numerical examples are discussed and com-
pared with experimental data (Salvesen 1966).

THE INVISCID PROBLEM

The calculation of the free surface llow past sub-
merged or floating bodies with forward speed is usu-
ally performed with potential solvers, being the wave
propagation mainly determined by incrtial and pres-
sure forces. Let us consider the irrotational two—
dimensional steady flow in the domain D, hounded
by the water-air interface S and by the curve T
(closed or not) on which Neumann boundary con-
ditions are forced (see fig.1).  The variables are
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Figure 1: Computational domain

nondimensionalized with respect to the (ree stream
velocity U and a characteristic length L (e.g. body
chord). We assume that the llow velocity i = (u, )
can be written as ii = V¢. The polential ¢ salisfies
Laplace equation inside the flow field:

Vip =0 (1)
The boundary condition on I' is
tn =1 (2)

being 1 assigned (1 = 0 al rigid boundaries at rest).
The shape ol the free boundary S is unknown, being
related to the solution by the dynamic condition:
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On this surface, the solulion ¢ satisflies

i
%w-ww-ww e, =l (1)




Finaliy a condition at infinity must be imposea:
lim [Vé|=1 (5)
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The nonlinear inviscid problem is linearized fol-
lowing the procedure suggested by Dawson (1977).
The velocity potential ¢ is split into two terms:

?(z,y) = p(z,y) + (z,y) (6)

In (6) the term ¢(z,y) is the double model poten-
tial (i.e. the potential due to I' and its image with
respect to y = 0), while the free surface potential
@&(z,y) takes into account the interaction belween
I' and S. The solution is expressed in terms of a
simple layer:

elz,y) = ./1:0 log(r - r") dvy (M

#(z,y) = f g logr dy + f alogrds (8)
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where ¢ is the source density while r ( 1 ) is the
distance of the field point from the source point (im-
age source point). The boundaries I' and S are dis-
cretized with flat elements while the densily is ap-
proximated with a piecewise constant function.

The double model potential is solved with the
boundary condition

on =P (9)

and is characlerized by the property py(z,0) = 0.
This solution gives the zero-Froude number flow
which is used as basis flow lor the linearization.

The free surface flow is solved using the lincarized
boundary condition
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while
P =10 on I’ (11)

Next the new free surface comes rom Lhe lin-
earized form of eq. (3):
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THE VISCOUS PROBLEM

Viscaus effects are dominant in the region close
to the body and in the wake, where separalion of
boundary layer and formalion of vortices occur. The
solution of the Navier-Stakes equations is required
in these regions.

For steady problems, the governing s‘qunl ions of
the viscous flow arc

ap d .
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where the index notation has been adopted, p = P/p
and 7y; is the viscous stress

du;  Ouj ) (15)

Tij = (U —+ VT) (5}'—3' + a:l)z'

vr is the turbulent viscosity, defined by the Baldwin
and Lomax (1978) algebraic model.

The Reynolds Averaged Navier-Stokes equa-
tions (13-14) are discretized using a finite volume
scheme and are integrated in time using a pseudo-
compressibility implicit scheme developed by Kwak
et al. (1986). In this scheme, pressure and Cartesian
components of velocity are located at the center of
the cell. The flux at cell interfaces are computed by
simple averaging and centered differencing. A nu-
merical high-order dissipation is introduced to sta-
bilize the calculation, while a local time step is used
to speed up the convergence rate. Approximate fac-
torization technique is used to split the coefficient
malrix into two block tridiagonal matrices, for which
an efficient solution algorithm exists.

THE COUPLED PROBLEM

One of the crucial points in viscous—inviscid cou-
pling is the position of the surface at which the
malching musl be imposed. Several possibilities
have been explored in aerodynamics: at the outer
edge of the shear layers, on the displacement surface,
on the body surface using the transpiration velocity
concepl (Lock and Williams, 1987). In this paper an
approach similar to thal suggested by Dinh et al.
(1987) has been used, butl no overlapping region is
introduced to malch inner and outer solution. The
location of the surface I' is decided a priori and kept
fixed during the computation. Its distance from the
solid body is such that viscous ellects are assumed
to be negligible outside it. The obvious advantage
of this strategy is that regridding is needed neither
for the outer nor for the inner solver,

When dealing with acrodynamics problems, the
mafching of the two solutions is ileratively obtained
using:

i) the normal velocity computed al A € I' (see
fig. 2) with the viscous solver as houndary value for
the normal derivalive of the potential

iy 2t = LTS on I’ (lﬁ)

it) the pressure and the tangential velocity com-
puted at A € T" with the potential solver as bound-
ary valnes for the Navier- Stokes equalions,

Additional problems arise from the presence of a
moving interface in the fluid domain: in lact, al-
though the potential free surface solver is linearized
(Dawson, 1977), the approach described before gives
unsalisfactory resulls, regarding both wave height,
and length. Therefore, the coupling procedure has
been split inlo two separale slages.
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Stage 1: The Hasis Flow

In the first one, the basis flow around I and its im-
age is computed by means of an iterative procedure
consisting of the following steps:

(a) From the previous viscous step we solve the
e.cternal flow using the following boundary condition
on I':

on = -7 (17)

where 4 - 71 is the normal component of the viscous
velocity at T (see fig. 2).

(b) The values of tangential component of poten-
tial velocity @ - and pressure at I' are then used as
boundary conditions for the viscous problem.

==l |

Figure 2: Matching surface [ and variable collocation

At each global iteration the viscous solution is car-
ried on until the Ly residual on divergence R**+! be-
comes smaller than o R¥, where o is assigned (tipi-
cally O(1071)). _

For the convergence of the iterative procedure an
underrelaxation factor of 0.2 is used to updale the
density source o.

Stage 2: The Iree Surlace Flow

Once the solution of the basis [low is obtained, the
influence of the free surface is taken into account.
The boundary conditions for the external flow are:

Gp= - A onT (18)
ﬁoiﬁaxz +2ﬁ9x99x::‘f7ba:+‘r‘% = _(p:zrlf,:r.t ony =0 (19)

where " -4 is known from the previous viscous

computation and i is the converged double model
velocity. Next the free surface is computed from
(12).

The iterative procedure is identical to that nsed
in the double model solution. The convergence of
the iterative procedure becomes slower and an un-
derrelaxation factor of 0.1, 0.05 is used to update the
density source &.

NUMERICAL RESULTS

Some sample problems were analyzed to test the
reliability of the algorithm. In the first problem no
free surface was present. The flow past a NACA
0012 profile at zero incidence and Re = 10° has
been computed using both a large grid with no cou-
pling and a smaller mesh on which the matching
procedure has been used (the interface I' was 0.2 far
from the body surface). The computed solutions are
compared in terms of pressure contours (fig. 3) and
pressure coefficient on the body surface (fig. 4). The
convergence of the viscous solution was reached in
almost the same number of iterations in both cases.
The CPU time decreased linearly with the number
of grid points, being the cost of the inviscid compu-
tation negligible.

Figure 3: Isolated body: NACA 0012 at zero incidence. Re =
10°. Comparison between the pressure field computed with
a 128 x 64 grid without interaction (dashed lines) and the
computed field with viscous—inviscid interaction (continuous
line) with a 128 x 16 grid. puuin = —0.2, pmaz = 0.42,
Ap =0.02

Then free surface effects were analyzed. The invis-
cid flow around the same NACA 0012 profile, sub-
merged at a depth h = 1.15, 'r = 0.8, was com-
puted using both the polential solver and the cou-
pled finite volumes-BEM solver. Free surface eleva-
tions are shown in fig. 5.

At last, the experiment of Salvesen (1966) was
simulated using the proposed algorithm. The nu-
merical free surface elevation is compared with the
measured data in fig. 6. The wave length seems
to be well predicted by the numerical simulation.
The disagreement on the wave amplitude is proba-
bly due to the linearization of the potential solver
(Lalli et al., 1992), while the differences near the
first trough can be attributed to the uncertanties of
the turbulence model and the grid resolution in the
viscous computation. The convergence history (fig.
7) shows that the discrete equations can be solved
within round-ofl errors.
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Figure 5: Naca 0012 profile at zero incidence. Inviscid flow
at I'r = 0.8. Free surface profiles. Solid line: coupled finite

Figure 4: Isolated body: NACA 0012 at zero incidence. Re = volumes-BEM computation; o: BEM computation.

10%, Comparison between the pressure coefficient computed
without interaction (solid line) and the Cp computed with
viscous-inviscid interaction (o).
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