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ABSTRACT

Complex fluid motions may result when the fluid in-
side a completely filled cylinder is driven by the constant
rotation of the bottom endwall. At low rotation rates, the
flow is steady and axisymmetric vortex breakdown is pos-
sible. At higher rotation rates, a Hopf bifurcation takes
place resulting in a periodic unsteady flow. The kinemat-
ics of the calculated flow are investigated by classifying
the local topology as determined from the invariants of
the velocity gradient tensor. The principal strain direc-
tions are determined and the alignment of the vorticity
vector with these directions is investigated, particularly
in the vortex breakdown region. The topological features
identified in this idealised flow are expected to be univer-
sal to all processes involving vortex breakdown.

INTRODUCTION

With the advent of full numerical calculations of the
Navier-Stokes equations, it has become possible to study
the details of complicated flows. In contrast to previous
analyses of unsteady flows where only mean quantities
and simple correlations could be considered, it is now
possible to study both spatial and temporal distributions
of any flow quantity. Even quantities which are difficult
to measure in a physical experiment, such as the vortic-
ity, are now available. New methods of investigating the
large data bases produced by such calculations have had
tobe developed. A good starting point for understanding
complex unsteady flows is to study the kinematics and
the invariant character of the topology of such flows.

GLOBAL AND LOCAL CLASSIFICATIONS OF
FLOWFIELD TOPOLOGIES

Complex flow fields can be interpreted by classify-
ing their topology. This can either be done globally or
locally. In the global approach, developed by Perry and
Fairlie (1974) and extended by Chong, Perry and Cantwell
(1990), the critical points of the flowfield are identified.
The critical points in a flowfield are those points where
all three velocity components are zero relative to a global
observer. A local Taylor series expansion of the velocity
field with respect to space coordinates is made at each of
these critical points, and the invariants of the resulting
3 x 3 Jacobian matrix, the velocity gradient tensor Ajj, are
used to completely classify the topology of this critical

- point.

In the local approach the coordinate system follows
the fluid particle without rotation. That is, each point in
the flowfield is considered to be a critical point, since the
velocity of each point is zero relative to a local observer.
The topology of each point in the flow is then classified
as in the global approach by considering the local veloc-
ity gradient tensor at each point in the flow. Due to the
Galilean invariant nature of the velocity gradient tensor,
and hence any property based on this tensor, the local
topological classification of each fluid flow point is inde-
pendent of the observer. This local classification of the
flowfield was first used by Chen et al. (1990) and is the
approach used in this study.

The velocity gradient tensor can be decomposed into
its symmetric and antisymmetric parts, i.e.
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is the rotation tensor. Ay, S; and R;; are all tensors of
second order.

For a second order tensor, A, if A;, A; and A3 are the
eigenvalues and ey, e; and e; are the eigenvectors, then

(A-ADe =0,
and the corresponding characteristic equation
det[A - AI] =0,
may be written as
A +PA2+QA+R =0.
The invariants P, Q and R are
P=-5;
Q = (P*- 5;8; - RyR;;) /2,
R = (-P* +3PQ - 5,35k - 3R;RySi) /3.

For an incompressible flow, as is being considered here,
P = 0, and the topology of the flow is completely classified
by Qand R.




The characteristic equation, A* + QA + R = 0, can have
(i) all real distinct roots, (ii) all real roots with at least
two equal, or (iii) one real root and a pair of complex
conjugate roots. The curve 27R* + 4Q° = 0, separates the
regions of real and complex roots. Chong, Perry and
Cantwell (1990) defined regions where the velocity gra-
dient tensor has complex eigenvalues as vortex cores, i.e.
regions where Q > —3(R/2)>/® are vortical in nature. The
eigenvalues of the velocity gradient tensor determine the
local kinematics of the flow, and these are determined by
the invariants Q and R. If Q > -3(R/2)*/%, then a pair of
complex conjugate eigenvalues result and the trajectories
will spiral locally. Whether the spirals are stable or un-
stable is determined by the sign of the real eigenvalue,
which in turn is determined by the sign of R. If R > 0,
then the spiral is unstable and to conserve mass, the local
topology is of the unstable focus/contracting type. For
R <0, it is of the stable focus/stretching type. For the
degenerate case of R = 0, the trajectory is a closed loop,
rather than a spiral. For Q < -3(R/2)%/3, the local flow
is strain dominated and for R < 0 the topology is of the
stable node/saddle/saddle type and for R > 0 it is of the
unstable node/saddle/saddle type.

The eigenvectors of the rate-of-strain tensor, S, are
known as the principal strain rate directions. The corre-
sponding eigenvalues, the principal strain rates, are real,
since 5; is symmetric, and if they are distinct, then the
principal strain rate directions are orthogonal. If two of
the eigenvalues are equal, then the principal strain rate
direction corresponding to the remaining eigenvalue is
uniquely determined, except for the sense of its direction.
The other two can be any vector in the plane normal to
the first principal strain rate direction, and in particular
they can be any two orthogonal vectors in the plane. If all
three eigenvalues are equal, then any vector can be taken
as a principal strain rate direction, and in particular they
may be any three orthogonal vectors.

SWIRLING FLOW IN AN ENCLOSED CYLINDER

Consider a circular cylinder, of radius R and height
H, completely filled with an incompressible fluid of con-
stant kinematic viscosity, v. At time t = 0, when the fluid
and the cylinder are at rest, the bottom endwall is impul-
sively set to rotate at a constant angular speed Q. This
flow is completely specified by two non-dimensional pa-
rameters. These are the aspect ratio of the cylinder H/R,
and the rotational Reynolds number Re = QR?/v,

When the bottom endwall is impulsively started, a
thin Ekman boundary layer (with constant thickness of
order Re™'/?) is formed which centrifuges fluid outwards
while drawing fluid from above to maintain conservation
of mass. The expelled fluid then spirals up the sidewall,
forming another boundary layer from which a portion
of the angular momentum and total head acquired in the
Ekman layer is transferred to the interior flow through the
action of viscous stresses. This sidewall boundary layer
is deflected at the upper endwall and an upper endwall
boundary layer is formed. The endwall boundary layer
separates at r = 0, forming a central vortex which returns
fluid back towards the Ekman boundary layer. Inaregion
of Re — H/R parameter space, this central vortex under-
goes vortex breakdown, as detailed in Lopez (1990) and
Brown and Lopez (1990). The flow remains axisymmetric
up to fairly high Reynolds numbers as demonstrated by

the experiments of Escudier (1984).

The details of the equations and boundary condi-
tions used to calculate the flow field are given in Lopez
(1990). Here, however, instead of using the axisymmetric
form of the Navier-Stokes equations cast in the stream
function vorticity formulation and integrated using a
time-accurate finite-difference technique, a time-accurate
pseudo-spectral formulation for the axisymmetric primi-
tive variables form of the Navier-Stokes equations using
the tau method to impose boundary conditions was used,
following the method detailed by Tuckerman (1989). One
of the attractions of using a spectral representation of the
flow is the availability of high order spatial derivatives
to accurately calculate the velocity gradient tensor and
other related tensors. Spectral differentiation, using well
known recursive formulae, is much more accurate than
using finite differences.

RESULTS AND DISCUSSION

The plot of the streamfunction in figure 1(a) clearly
shows where the vortex breakdown bubbles are formed
along the axis of symmetry for the steady case of Re = 2126
and H/R = 2.5. The corresponding spatial distributions
of the three components of vorticity are shown in figures
1(b) - (d). In the vicinity of the axis of symmetry the radial
component of vorticity, wy, is approximately zero except
for a region just upstream of the upper bubble where it is
negative. Along the rotating and stationary endwalls, w,
is found to be positive. The most striking feature of the
vorticity field is the distribution of the vertical component
of vorticity, w,. In the core region, including the rotating
endwall, w; is positive, while in the side wall boundary
layer it is negative. There is a region separating these
areas and including the stationary endwall in which w,
is almost zero. This naturally divides the flow into an
inner and an outer region, where in the inner region the
angular momentum of the flow increases with radial dis-
tance from the axis, while in the outer region the angular
momentum decreases with radial distance. (Note that
w: = 1/rd(rv)/or). This feature of the w, distribution is
also observed in higher Reynolds number cases for which
the flow is unsteady. The vorticity field shows that the
flow is laminar with no small scale flow structures , other
than the thin Ekman layer on the rotating endwall.

As far as the flow classification using the invariants
of the velocity gradient tensor is concerned, this axisym-
metric flow is interesting, since it exhibits all the possible
three-dimensional incompressible flow topologies. This
characteristic can be attributed solely to the swirl in this
flow. The topology map in figure 2(a) shows that most
of this flow is either stable focus/stretching or unstable
focus/contracting and hence vortical in nature. Com-
paring figures 1(d) and 2(a), the line which separates the
vortical region from the strain dominated region coin-
cides reasonably well with the line w. = 0. In addition,
most of the focal regions are stretching foci, hence, the
strain field is such that the vorticity aligns with the posi-
tive principal strain rates. However, in the region of the
vortex breakdown bubble, there is a switch from a stable
focus/stretching topology to an unstable focus /contract-
ing topology. It is interesting that this switch from stable
to unstable focus type topology, which occurs when the
third invariant of the velocity gradient tensor, R, vanishes,
corresponds precisely with dip/dz = 0. This may be seen
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in figures 1(z) and 2(a).

In the unstable focus/ contracting topology, the vortic-
ity aligns itself predominantly with the compressive prin-
cipal strain rates. Figures 2(b) and (d) which show the
alignment between the vorticity vector and the smallest
(compressive) and the largest (stretching) principal strain
rates bear this feature out quite clearly. In the vicinity of
the axis of symmetry, one observes that upstream and in
the upper part of both bubbles the vorticity is aligned with
the smallest principal strain rate direction, and hence the
largest and intermediate principal strain rate directions
are perpendicular to the vorticity vector. It can actually
be shown that on the axis of symmetry, two principal
strains are always equal, hence, the particular alignment
just described corresponds to axisymmetric compression.
Downstream of this region, i.e. in the lower part of the
bubbles, the vorticity aligns with the largest principal
strain direction. In these regions and along the axis the
flow corresponds to axisymmetric stretching.

In the Ekman layer on the rotating endwall and in the
boundary layer on the stationary endwall the vorticity
aligns itself with the intermediate principal strain rate di-
rection, whereas in the sidewall boundary layer, the vor-
ticity is not aligned with any of the principal directions.
Just outside the sidewall boundary layer, where w, = 0,
the vorticity is aligned with the intermediate principal
strain direction. In the region identified in figure 1(d),
where w; is nearly zero and which divides the flow into
inner and outer regions, one observes that the alignment
between the strain field and the vorticity is such that the
vorticity vector is perpendicular to the smallest principal
strain rate and is at approximately 45 degrees to the inter-
mediate and the largest principal strain rate directions.

The same observations were made for the periodic
case of Re = 2765. The unsteadiness in the flow field is
mirrored in the topology map and the alignments. The
switch from stable to unstable focal topology still occurs
where 8y /az = 0. There are no changes in the local topol-
ogy throughout the period of the oscillation, just as there
is no change in the topology of the Poincaré map for this
periodic case (Lopez and Perry, 1992).

SUMMARY

The axisymmetric vortex breakdown flow in the
enclosed cylinder can be characterised by the follow-
ing kinematic features. Along the axis of symmetry
and upstream of the breakdown, there is a change in
topology from stable focus/stretching to unstable fo-
cus/contracting. Similarly, the topology changes from
unstable focus/contracting to stable focus/stretching in
the downstream part of the breakdown region. Along
the axis, the vorticity vector is aligned either with the
principal direction associated with the most positive or
most negative eigenvalue of the rate-of-strain tensor but
never with that corresponding to the intermediate eigen-
value. The alignment corresponds closely with the topol-
ogy; where the topology is stable focus/stretching vortic-
ity is aligned with the largest positive strain and where
the topology is unstable focus/contracting it is aligned
with the largest negative strain. Itis postulated that these
kinematic features are not peculiar to the idealised ax-
isymmetric flow studied here but are universal to all pro-
cesses involving vortex breakdown.
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