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ABSTRACT

Eddies are assumed to lose energy through
fluid flow drag. The concept leads to an inverse
dependence of mixing length, and hence also of
eddy viscosity, on drag coefficient in the log-
layer where a constant drag coefficient may be
assumed. This eddy viscosity dependence is assumed
to also apply to the near wall region with
appropriately modified drag coefficient, leading
to an eddy viscosity expression of the form
po/p=ry*/[1+b/(y*u*)],  which  correctly wvaries
cubically with y near the wall and linearly with y
away from the wall. Choices x=0.407 and b=275 lead
to an accurate "universal" velocity profile. Many
unorthodox flows not conforming to the "universal"
profile may be fitted by altering coefficient
values. The phenomenological basis of the eddy
viscosity form permits both interpretation and
correlation of these data.

INTRODUCTION

Several types of turbulent flow have
velocity profiles which disagree with the
"universal" profile, even for developed pipe flow.
For these flows, hereafter referred to as
"anomalous" or "unorthodox" turbulent flows,
velocity profiles away from the wall wvary
logarithmically with wall distance, as with
conventicnal flows, but with slope and/or
intercept parameters disagreeing with the
"universal" values. In some cases, velocity
profiles do not approach u*=y* as the wall is
approached. Examples of unorthodox turbulent flows
are the simultaneous flow of gas and liquid with
moderate to high gas content; flows with drag-
reducing additives; flows affected by magneto-
hydrodynamic influences; and flows with turbulent-

modifying flow boundaries (eg ‘"riblets", or
flexible "compliant surfaces").
Although current models of turbulence can

often (but not always) be made to fit unorthodox
velocity profiles with suitably modified empirical
coefficients, they are unable to a priori predict
data trends, and in most cases are unable to offer
explanations for the anomalous behaviour.
Phenomenological models such as the various mixing
length theories do not have sufficient insight
into turbulence to be able to predict or explain
the anomalous behaviour. Current models emphasise
application to complex flow geometries, These
models also cannot handle anomalous turbulence
since they use empirical coefficients or functions
to implicitly or explicitly invoke the "universal"

profile in the near-wall constant shear stress
region of the flow.
As a first step towards understanding
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unorthodox turbulent flows, this work returns to
the simple mixing length concepts of Prandtl, as
described in standard texts, and extends them to
provide a phenomenological basis for assessing how
coefficients of the model might be affected in
unorthodox flow circumstances. As will ©be
demonstrated, Prandtl's model so extended also
describes simple turbulent pipe flow better than
other simple alternatives.

It is widely considered that Prandtl
conceived his mixing length ¢, the distance an
eddy (considered as a sphere) moves before losing
its identity, as an analogue of the mean free path
of the kinetic theory of gases. However, having
formulated the concept, he further developed the
mixing length form by simple empirical methods.

This work retains the concept of an eddy as a
simple solid during its lifetime, but considers
the drag on the eddy in order to provide an
improved description of the mixing length.
DEVELOPMENT OF THE MODEL

From the definition of viscosity by

t=(p+p,) du/dy,
the near-wall velocity profile in pipe flow is
given in wall units by

y+
ut=|  (lp/p)tdyt (1)
As discussed in standard texts, Prandtl's

mixing length theory predicts that, away from the
viscous sublayer,
H/ p=tr=ry®. (2)
It is assumed here that an eddy is created
from dissipating eddies; acts initially as a solid

object; loses energy through drag acting on it as
it and loses its

moves ; identity after a
particular fraction of its initial energy 1is
dissipated. Its remaining energy then contributes

to the formation of new eddies. As with Prandtl's
model, the distance travelled while it retains its
identity is the mixing length /.

In the turbulent region outside the viscous
sublayer, a constant drag coefficient C, may be
assigned to the eddy. It is easy to show that the
above model leads to

£-d/C,, (3)
where d is a characteristic eddy dimension. To
maintain consistency with Prandtl's model at large
distances from the wall, d is assumed to be
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Fig. 1 Comparison of predicted and experimental
non-dimensional velocity profile

proportional to the distance from the wall:
d-y.
Equation (3) then becomes
b/ ==k, d*/C =k k,y*/C_=xy* (4)

where k, and k, are proportionality constants.

This p, relation is now assumed to apply
also to the near-wall region provided the constant
far-from-the-wall drag coefficient C, is replaced
by C, the appropriate near-wall value. Noting that
C is expected to approach an inverse relation with
the eddy Reynolds Re, number at lower velocities,
the loss coefficient is assumed to be of the form

C=C,+a/Re, (5)

where a is a constant. This approaches the correct
high and low Re limits.

The third term of equation (4) then becomes
k,d*/(00+a/ReE). To maintain consistency of the
equation, a corresponding change must also be made
to the fifth term. Equation (4), conceived for the
turbulent region of the flow, becomes

pt/p=xy*/(1+a/(CuReE))=k1d+/(C°+a/ReE). (6)
As developed, this should now also apply to the
viscous sublayer. From the second and third terms
of this equation,

d*=x y*C_/k,.

Re-expressing the
wall parameters,

eddy Reynolds number in terms of

Reg=pud/p=d*u*

and substituting into the third term of equation

(6) leads to an expression for turbulent
viscosity:

e/ p=ry*t/ [1+ak, / (ky*u*C 2) ], 7
which should apply both within the viscous

sublayer and beyond it.

The velocity profile is found by substituting
this, with appropriate choices of the coefficients
k and the group b:ak1/(xcoz). in equation (1) and
integrating over the flow area.
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Fig. 2 Comparison of predicted and experimental
eddy viscosity distribution

EVALUATION OF THE MODEL

A preliminary examination of the form of
equation (7) confirms that trends predicted by the
model are qualitatively correct for the viscous

sublayer, ‘"buffer" region, and log layer. Hy
approaches zero as the wall is approached, so
equation (2) correctly approaches ur=y*.
Substitution of this into equation (7) confirms

the theoretical requirement, first demonstrated by
Reichardt (1951), that d, varies as y> as vy
approaches zero. (To the authors's knowledge, the
present model is the first phenomenological model
with this consequence. Other models use specially
structured empirical functions to achieve an eddy
viscosity dependence on y® as the wall is
approached.) For large wall distances, equation
(7) approaches M /p=rky*, thus yielding the correct
logarithmic profile here. The transition between
these limits is smooth, implying a "buffer" region
which merges smoothly with the viscous sublayer
and log-region limits.

Quantitative evaluation of the model, in
which model predictions, with suitable choices of
K and the group b=(ak,/xC2), are compared with
experimental data, is performed below.

Conventional turbulent flow

The model deseribes conventional flow
reasonably well with k and b choices of 0.407 and
275. The conventional Karman coefficient wvalue
0.407 is required to ensure the correct slope of
the logarithm region of the wvelocity profile.
Interestingly, the result b=275 is obtained if the
proportionality coefficient k, is assumed to be

1.0, and the eddy drag coefficient equation is
assumed to be C=24/Re + 0.46, a form which
adequately describes the drag coefficient for

solid spheres. Figures 1-4 compare predictions of
the model using these coefficients and published
data for velocity profile, turbulent viscosity,
near-wall turbulent shear stress
u'v /(u)?| =1 pp )t
near-wall turbulent energy production
(prpdu' v /(u ) (dusdy) | o =(2+p /ptpsp )t
and near-wall dissipation

[(u/p u’2)(du/dy)]2|mR:(1+pt/p)Q.

As can be seen, the agreement is good, although
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Fig. 3 Comparison of predicted and experimental
turbulent shear stress distribution

some discrepancies can be

region of the curves.

seen in the buffer

north x Turbulent Flow
The model has been further evaluated in
terms of its compatibility with unorthodox

friction facter and velocity profile data. A
number of such data have been examined for this
purpose. Many, but not all, of them can be
described by the model with suitable choices of
coefficients b and x. The connection between these
coefficients and the coefficients of the eddy drag
equation of the model allows data to he
interpreted in a way which may lead to improved
understanding of the causes of unorthodox
turbulent flow, and/or may provide a means of
developing improved predictive equations for such
flows. An example of each type of application of
the model is given below.

In the first example, the effect of a
magnetic field on a conducting fluid is
considered. The present model allows the existing
simple qualitative explanation of turbulence
reduction due to the field to be quantified, so
leading to simpler and more accurate predictions
than those resulting from other published models
of such flows. The second example considers the
less-understood effect of drag-reducing additives.
In this case, the model suggests a means by which
the effect occurs.
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Fig.5 Comparison of predicted and experimental

non-dimensional velocity profiles for mercury
flowing parallel to a magnetic field

Fig.4 Comparison of predicted and experimental
non-dimensional turbulence production and
dissipation profiles

Conducting fluid flowing parallel to a magnetic

field., Liquid metal coolants proposed for fusion
reactors are designed as far as possible to follow
paths parallel to the reactor's magnetic field to
reduce large magnetic pressure drops induced by
the coolant conductor crossing field lines. Even
so, the field opposes turbulent fluctuations
normal to it, so turbulence is reduced.

Empirically (see eg the review of Lielausis
1975), magnetohydrodynamic effects increase solid
object drag coefficients by a factor I1+gRePHal,
where Ha, the Hartmann number, is a dimensionless
magnetic field and coefficients g, h and i depend
on the shape of the solid body.

If a global rather than local view is taken
of the above Reynolds number effect if applied to
eddy drag, equation (6) implies that a magnetic
field parallel to the flow can be allowed for by
dividing the Karman coefficient by a factor of the

form l+gRe"Ha’. Empirically, the present model
with b=275, as for the "universal" profile, and
with k=0.407/(1+Re*'Ha""-%), in line with the

above suggestion, describes "fully turbulent" data
from various sources for liquid metals flowing
parallel to a magnetic field. Figures 5 and 6
compare predictions of the above with
representative velocity profile and friction
factor data. The agreement 1is better than that
achieved by other published models of these flows
(see eg Genin and Krashnoshchekova 1682).
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Fig. 6 Comparison of predicted and experimental
friction factors for mercury flowing parallel to a
magnetic field
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Flows affected by drag reducing additives,. In
many cases, drag reducing additives shift velocity
profiles in the log region above but parallel to
the ‘"universal" profile, extending the sublayer
region in doing so (Virk 1975). The effect can be
simulated with the present model by increasing the
coefficient of the laminar component of the eddy
drag coefficient. This is consistent with the
empirical finding (Virk 1975) that the drag
reducing mechanism, currently not understood,
occurs in the sublayer region, and suggests
additives increase the eddy viscous drag but not
the eddy turbulent drag.

CONCLUDING DISCUSSION

Prandtl's mixing length theory has been simply
extended so that a single form of velocity profile
covers the viscous, buffer, and log region of
velocity profiles. The derived form of eddy
viscosity leading to the velocity profile equation
behaves correctly at small and large wall
distances, and is the only phenomenclogically-
developed form known to the author to achieve
this. The model is compatible with conventional
turbulent pipe flow data, and with many unorthodox
turbulent pipe flow data. The model implies that
the slope and intercept parameters of the log-
layer are not decoupled, as assumed in
conventional models. This result is consistent
with conclusions of an examination of unorthodox
gas-liquid flow velocity profile and friction
factor data (Beattie 1977). The phenomenological
basis of the model allows it to be used as a tool
leading to improved prediction and/or
interpretation of unorthodox turbulent pipe flows.
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