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Nowadays, the study of compressible turbulence has a
renewed interest because of the existence of ambitious
aeronautical programs. For Mach numbers built on the
mean velocity which are higher than 4 or 5, it cannot be
assumed that the divergence of the fluctuating field
remains equal to zero and compressibility effects do affect
the dynamics of turbulence, Recently, a lot of work has
been performed to forecast and understand the dynamics
of compressible turbulence. We can, in particular, quote
studies using direct numerical simulations from Blaisdell
(1990), Normand and Lesieur (1992), Erlebacher et al.
(1987), Passot and Pouquet (1987).

The aim of the present work is to investigate the extent
to which two-point closure theories can be extended to
isotropic compressible turbulence.

The fluid is assumed barotropic in order to avoid
introducing the energy equation. A statistical average is
used and the density is decomposed into a mean part and a
fluctuating part :

p=<p>+p (1)
In order to avoid excessive complexity, the fluctuating
density p' is neglected as compared to <p>. This
approximation requires that the turbulent Mach number
satisfies Mt2 << 1 with the turbulent Mach number
defined as :

Mt = Y q2/C (2)
where Cp is the velocity of sound and q3 is twice the
turbulent kinetic energy. Equations are written in the
framework of the E.D.Q.N.M. theory (Marion, 1988), in
the particular case of homogeneous and isotropic
turbulence. The resulting set of equations is composed by:

- an equation on the spectrum of the
turbulent kinetic energy linked to the solenoidal part of the
velocity field, which corresponds to the velocity
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fluctuations perpendicular to the wave vector K. This

equation is :

%ESS(KJ) = 2vK2ESS(K,1)

+BaK2TSS(K1Y)  (3)

- an equation on the spectrum of the
turbulent kinetic energy linked to the "purely
compressible" part of the velocity field, i.e. linked to the
fluctuation along the direction of the wave vector:

%ECC(KJ) = 2vK2ECC(K 1)
+ 4ank2TCC (K 1)

K gcp
- 2pErT (K

(4)
- an equation on the spectrum of the
potential energy linked to the pressure :

9 PP - 2K CPk
2 PP = 2 ECPIKA)

(5)

- and an equation on the pressure-velocity
correlation spectrum :

%ECP(K.!) - vK2ECP (K1)
+ 2nK2TCP(K 1
R —K~EPP(K,I)
<p>

+ K<p>ngECC(K.t) (6}
with, in the case of a Stokes fluid :

oo M2

4
<p> 3

v (7)

where 1 and A are the two viscosities assumed to be



uniform and constant . T, TCC, TCP are the transfer
terms arising from the non linear terms of the basic
equations. The expressions for these terms are not written
here : they can be found in the thesis of Marion (1988).
They are rather complex expressions, having basically the
same form as the usual transfer term for incompressible
isotropic turbulence : i. e. involving the triadic
interactions, but with more terms, due to the more
complex character of compressible turbulence.

The results presented here correspond to cases of
isotropic turbulence submitted to a forcing, In order not to
perturb the evolution of the purely compressible part of
the field, energy is injected on the solenoidal modes only.
This is done, in a classical manner, by just using frozen
values for the solenoidal energy spectrum ESS in the small
wave-number range (up to K = 64 m-1). Results are
analysed for asymptotic states where the compressible
mode has reached saturated values. These asymptotic
states are obtained for times whic can be very long. For
shorter times, it is found that the compressible quantities
(energy and dissipation) sharply depend on the initial
conditions. This was remarked in the direct simulations as
well.

Spectra of kinetic energy, for the solenoidal and

compressible modes, are given in figure 1 for different
values of the turbulent Mach number. The solenoidal
energy spectrum shows an inertial zone in K-5/3 which is
the same as that in the Kolmogoroff spectrum for
incompressible turbulence. This spectrum is not affected
when the value of the Mach number varies. It can be
observed that spectra of the compressible part of the
fluctuating velocity show a corresponding law with a
slope (K-11/3). This slope is found for small and
moderate values of the turbulent Mach number Mt. Only
when Mt is larger than 0.1, the shape of the purely
compressible energy spectrum is modified. The level of
the compressible energy is found to be dependent on the
Mach number and varies as Mi2.
The same slope appears for the spectrum of pressure
fluctuation. We can notice that a slope of (-11/3) was
found also with Large Eddy Simulation of compressible
isotropic turbulence by Comte et al. (1990). When spectra
are divided by the square of Mt, it appears in figure 2a that
the results can be collapsed for small values of Mt
(Mt < 0.03). Then, the following relation is obtained :

ECC o Mi2K-11/3 (8)

For larger but moderate values of Mt (0.03 < Mt € 0.1)
the compressible energy, normalized by Mt2, tends to

decrease in the small wave-number part of the spectrum

but the slope (-11/3) remains unchanged. For Mt > 0.1,
the slope decreases. At Mt=1, the complete spectrum is
affected (figure 2b).

The dependence on Mt2 can also be observed in figure
3 where the acoustic energy (BCC + BEPP) ig given as a
function of Mt. We, therefore, effectively obtain a
straightline with a slope (+2). At Mt larger than 0.1 a
departure from the Mt2 law is observed.

The influence of the compressibility may also be

observed on the dissipation. This latter is decomposed
into a solenoidal part (€S) and a compressible part (eC) :

E=¢€5 + EC 9)

A behavior in Mt2 is found for the compressible part of
the dissipation (figure 4). For a large range of Mach
numbers, the following relation is obtained :
ec=0.5Mi2 eg (10)
which is in good agreement with results of simulations
from Aupoix et al. (1990) and Sarkar et al. (1991). We
also note a small departure from the Mt2 law, at high
Mach number. This departure occurs at larger turbulent
Mach numbers than for the energy.

When the influence of the Reynolds number is

investigated, it is found that the level of the compressible
energy is affected according to a linear dependancy with
Re (figure 5).
Thus, the compressible energy behaves as a function of
(Mt2, Re), as can be observed on the figure 6. Spectra of
compressible energy collapse when the value of the
turbulent Mach number is multiplied by 10 and when the
Reynolds number is divided by 100. Finally, it should be
emphasized that investigating such a range of various
Reynolds numbers would have been impossible using
Direct Numerical Simulations.
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Figure 1: Turbulent kinetic energy spectra
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Figure 2a : Compressible energy spectra divided by M2
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Figure 2b : Compressible encrgy spectra divided by Mi?
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Figure 3 : Acoustic energy divided by the
solenoidal energy in functien of Mt
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Figure 4 : Compressible dissipation divided by
the incompressible dissipation
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Figure 5 : Compressible energy specta
for two Reynolds numbers
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Figure 6 : Spectra of the compressible energy ly

for differem values of Mt and Re
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