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ABSTRACT

The Yakhot-Orszag renormalization group is used
to develop a nonlinear algebraic Reynolds stress model.
Quadratic nonlinearity of the mean velocity gradients
produces anisotropy of the normal stresses and admits
turbulence driven secondary flows, such as appear in non-
circular ducts. When applied to plane channel and square
duct flows, good agreement is observed with normal stress
measurements in the central 80% of the flow; however,
close to the wall the behavior is incorrect, at times even
exhibiting negative normal stresses. The non-physical be-
havior is attributable to the rapid straining in the near-
wall region, an effect not included in the model. Further
analysis demonstrates the efficacy of allowing the model
constants to vary as a function of the local mean strain,
thus incorporating a near-wall and rapid distortion effect.
The new model is exhibited, the functional variation de-
rived from plane channel flow, and the generalization for
three-dimensional flows is discussed.

INTRODUCTION

Laminar flow of a Newtonian fluid in a straight
square duct is unidirectional. In contrast, turbulent flow
of the same fluid in an identical duct reveals circulation
in a cross-section normal to the primary flow direction.
Rivlin (1957) suggested an analogy between the laminar
flow of a non-Newtonian fluid and the turbulent flow of a
Newtonian fluid. Non-Newtonian flow in a non-circular
duct produces secondary flows in the cross plane, which
Rivlin termed a ‘normnal stress effect’. The correspon-
dence suggested that a nonlinear generalization of the fa-
miliar Boussinesq eddy viscosity might explain the turbu-
lence driven secondary flows. Several investigators have
followed this idea of treating turbulence as a viscoclastic
medium, for example, Crow (1968), Lumley (1970), and
Pope (1975). Speziale (1987) proposed a specific maodel of
this type by requiring that the Reynolds stresses depend
on the first two Rivlin-Ericksen tensors.

The first conercte proposal arising from a system-
atic application of an analytical theory of turbulence was
by Yoshizawa (1984). His formula expresses the stresses
as an explicit quadratic function of the mean velocity
gradients. He uses a two-scale variant of the direct
interaction approximation (DIA) of Kraichnan (1959).
Yoshizawa's two-scale DIA derivation develops the coetfi-

135

cients of the gradients as integrals of certain combinations
of the isotropic Green’s function and correlation function
of Kraichnan’s DIA. A comparison therefore arises with
the derivation of transport coefficients from the Boltz-
mann equation, where Kolmogorov's universal state of
locally isotropic turbulence replaces thermal equilibrium
as a reference state.

The derivation of an explicit quadratic model by
renormalization group (RG) methods leads to a double
expansion in tensor product powers of VU and VU7, in
which the scalar amplitude (coefficient) multiplying each
term is a series in powers of ¢, the expansion parameter of
the Yakhot-Orszag theory. Following Yakhot and Orszag
(1986), these expansions are truncated at lowest order
in € and evaluated at e = 0. Such an explicit quadratic
model was derived by Rubinstein and Barton (1990). The
same procedure was employed for analysis of the passive
scalar and the Reynolds stress transport equations by
Rubinstein and Barton (1991, 1992). Whichever formal-
ism is applied, this expansion can certainly be continued
beyond the second order and will generate two types of
higher order corrections: new nonlinearities, and correc-
tions to existing terms which depend on scalar invariants
of the mean velocity field.

In principle, these corrections could be explicitly
evaluated perturbatively by TSDIA or RG methods. Al-
though the resulting polynomial model might sometimes
be useful, in regions of large | VU | it would be dominated
by its highest order terms and could produce inaccu-
rate or non-physical results. Even the explicit quadratic
model already predicts negative normal stresses in near-
wall flows, as shown by Barton et al. (1991). Yakhot et al.
(1992) argue that in such cases, the perturbation expan-
sion in powers of VI must be summed, even if only ap-
proximately. An analogy to Pade approximation suggests
that summation will produce scalar amplitudes which are
rational in VU; unfortunately, the absence of a simple law
of formation for the terms of perturbation theory makes
an analytical summation only a remote possibility.

Taulbee (1991) and Speziale (1992) have reached
similar conclusions starting from the implicit algebraic
Reynolds stress model of Demuren and Rodi (1984),
which expresses 7 lincarly in VU and 7VUT. Such
models can be solved explicitly for 7 as a function of VU.
The result is a model with ten algebraically independent
tensor terms in VI with coefficients rational in scalar in-
variants of VU. Since the implicit model is finite in the




limit of large | VU |, the resulting explicit model is also
finite in this limit, unlike the explicit quadratic model or
its higher order generalizations.

ANALYSIS

We will begin with a model of the type developed
by Rubinstein and Barton (1990) and following Yakhot

et al. (1992)
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in which the model coeflicients are functions of the sim-
plest, and most experimentally accessible scalar invari-
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These funchons will be chosen so that the model
predictions are consistent with known behavior for large
7. An interesting theoretical possibility is to require that
the model approach the one component limit of rapid
distortion theory (RDT) for 17 — co. This requires
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Such a model could not arise by summing the perturba-
tion theory described above because this theory invokes
the isotropic Green’s function. whereas the appropriate
Green's function for such highly strained fows is itself
strain-dependent. Nevertheless, at the level of modeling,
introducing a strain-dependent Green's function would
only require different 7 corrections. While this applica-
tion of RDT is attractive because it fixes the limiting
behavior of the model, it should be noted that numeri-
cal evidence for the natural occurence of this limit is not
conclusive.

A different approach is to find the 5 dependence
from data. The model, eq. (1), can be inverted to yield
Cr1,Cr3 in terms of known normal stresses, for simple
shear flows. (A simple shear flow is one in which a single
mean velocity gradient exists.) For plane channel flow,
with § = 0U/dy the only non-vanishing velocity deriva-
tive, we obtain
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where by, bse are the normalized normal stress deviators
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Using the normal stress data from the direct numerical
simulation of Kim et al. (1987) produces the function
shown in Fig. 1.
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Figure 1. Variation of Cri(n),Crs(n) from direct
simulation data.

It is interesting to note that in the high 7 region, these
graphs are reasonably smooth functions. The scatter in
the region n < 3 is not problematic because previous
investigations of channel flow show that in these regions,
the normal stresses can be well predicted using constant
values for the model coefficients.

The use of the 5—dependent C,,Cry is illustrated
by computing 2-D plane channel flow at much higher
Reynolds number than the direct simulation. The I — ¢
model of Yakhot et al. (1992) is solved along with eq.
(1). The y—dependence is implemented by interpolation
of the values in Fig. 1. Below 5 = 3 (the value for en-
ergy equilibrium), the constant values of Rubinstein and
Barton (1990) are used. Above n &= 11 (the limit of the
direct simulation data), the coefficients are extrapolated
as

Cry = 0576971 Oy = —0.07157 4
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Figure 2. Computed normal stresses using con-

stant Cry,Cr3 for a plane channel flow.

Figures 2 and 3 demonstrate the utility of the strain de-
pendent coefficients in eliminating the anomalous normal
stress variations near the wall. Note that since the fune-
tional variation of the coeflicients was determined from
direct simulation data of the plane channel, the results of




Figures 2 and 3 are not true predictions, but merely veri-
fication that the model is reproducing the desired behav-
ior. Current work in progress for the square duct exhibits
the same improvement in the normal stress variation near
the wall, however.

The decay of the model constants as ) increases, Fig.
1, agrees qualitatively with eq. (2), although this equa-
tion gives only a fair fit to the data. Figure 4 illustrates
the variation of 4 across the channel, indicating that the
maximum values arise in the near-wall region. Turbu-
lence in the near-wall region is in a highly strained, low
Reynlds number state. The use of these direct simulation
data as a near-wall correction is plausible, but does not
exclude different dependence at higher Reynolds num-
bers.
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Figure 3. Computed normal stresses using
C-1(n), Cra(7y) for a plane channel flow.
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Figure 4. Variation of 5(y*) from plane channel
direct simulation data.

DISCUSSION

The current work is motivated from the desire to
extend the generality and applicability of nonlinear alge-
braic stress models. Coupled with a K —& model, there is
the potential for solving a broad spectrum of engincering
problems without the complexity of full Reynolds stress
transport models. Though several investigators have es-
chewed algebraic mocdels for the more complex differential
ones, we continue to feel the former have much to offer.

Rodi (1976) has contributed appreciably to the
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present status of algebraic stress models. Early on he rec-
ognized the limitation inherent in constant values for the
model parameters. He proposed varying C, as a function
of P/e, the ratio of production to dissipation of turbu-
lent kinetic energy. He likewise proposed a correction to
the algebraic stress maodel for neglected transport effects
(convection and diffusion). Such modifications are, how-
ever, distinct from those proposed here. For example, in
simple shear flows, we write

P &

e & K

where T is the shear stress. As can be seen, except when
7/K is constant, the 5 variation and P/e variation are
distinct. This implies that the algebraic models can be
corrected (to some extent, at least) for both transport and
rapid straining effects. Asshown by Yakhot et al. (1992),
such models can also be corrected for some relaxation
effects.

A common problem encountered in previous appli-
cations of algebraic stress models, and frequently cited as
a reason to abandon thier further use, is numerical insta-
bility. When solved in conjunction with a K — & model,
the stress equations enter through the production terms,
and tend to make the K and & equations source-term
dominant, adversely affecting both stability and conver-
gence. Our approach is to recast the stress equations as
the sum of an isotropic and anisotropic contribution, with
the isotropic part having the appearance of an eddy vis-
cosity, but with a value of the equivalent “C,” different
from the actual value. The anisotropic part remains as
a source term but the isotropic part now contributes to
the diagonal elements of the implicit matrix inversion and
renders the matrix diagonally dominant. We thus do not
experience any additional numerical problems relative to
solution of the two-equation model.

Finally, for three-dimensional flows, the general defi-
nition of 7 is used, as shown just below eq. (1). However,
a new problem arises, that of defining C,,. This con-
stant does not enter for simple shear flows, but does, for
example, in square duct flows. Thus, direct simulations
of the plane channel are not useful for establishing its
variation with 7. It is of course possible to use square
duct simulations for the same purpose, however, they are
not currently available. For the square duct calculations
in progress we have chosen to evaluate C9 using material
frame indifference, which requires Cro = (Cr1 + Cr3)/2.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Steven Orszag
of Cambridge Hydrodynamics, Inc. for providing the
code for plane channel calculations. This work was per-
formed on contract NAS3-25266 with the NASA Lewis
Research Center.




REFERENCES

BARTON, J M, RUBINSTEIN, R and KIRTLEY, K
R (1991) Nonlinear Reynolds stress model for turbulent
shear flows. ATAA Paper No. 91-0609.

CROW, S C (1968) Viscoelastic properties of fine
grained incompressible turbulence. J Fluid Mech, 33, 1-
20.

DEMUREN, A O and RODI, W (1984) Calculation
of turbulence-driven secondary motion in non-circular
ducts. J Fluid Mech, 140, 189-222.

KIM, J, MOIN, P and MOSER, R (1987) Turbulence
statistics in fully developed channel flow at low Reynolds
number. J Fluid Mech, 177, 133-166.

KRAICHNAN, R H (1959) J Fluid Mech, 5, 497.

LUMLEY, J L (1970) Toward a turbulent constitu-
tive relation. J Fluid Mech, 41, 413-434.

POPE, S B (1975) A more general effective-viscosity
hypothesis. J Fluid Mech, 72, 331-340.

RIVLIN, R S (1957) The relation between the flow
of non-Newtonian fluids and turbulent Newtonian fluids.
Q Appl Math, 15, 212-215.

RODI, W (1976) A new algebraic relation for com-
puting the Reynolds stress. Z Angew Math Mech, 56,
T219- T221.

RUBINSTEIN, R and BARTON, J M (1990) Non-
linear Reynolds stress models and the renormalization
group. Phys Fluids A, 2, 1472-1476.

RUBINSTEIN, R and BARTON, J M (1991) Renor-
malization group analysis of anisotropic diffusion in tur-
bulent shear flows. Phys Fluids A, 3, 415-421.

RUBINSTEIN, R and BARTON, J M (1992) Renor-
malization group analysis of the Reynolds stress trans-
port equation. Phys Fluids A, 4, 1759-1766.

SPEZIALE, C G (1987) On nonlinear K —! and K —¢
models of turbulence. J Fluid Mech, 178, 459-475.

SPEZIALE, C G (1992) private communication.

TAULBEE, D B (1991) The present status and
future direction of algebraic Reynolds stress models.
Worlkshop on Engineering Turbulence Modeling, NASA
CP-10088, 101-144.

YAKHOT, V and ORSZAG, S A (1986) Renormal-
ization group analysis of turbulence. I. Basic theory.
J Sci Comput, 1, 3-51.

YAKHOT, V, THANGAM, S, GATSKI, T,
ORSZAG, S A and SPEZIALE, C G (1992) Develop-

ment of turbulence models for shear flows by a double

expansion technique. Phys Fluids A, 4, 1510.

YOSHIZAWA, A (1984) Statistical analysis of the
deviation of the Reynolds stress from an eddy-viscosity
representation. Phys Fluids, 27, 1377.

138




