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NUMERICAL STUDY FOR THE SHEDDING OF VORTICITY FROM A SEMI-INFINITE PLATE

AUSTRALIA

Abstract - This paper is concerned with the shedding of
vorticity from a semi-infinite plate which is parallel to the free
stream. The flow separation from the right-angled corners of
the leading edges is computed by using a vortex sheet
technique. The computed free shear layer, which rolls up into
a large spiral, is found to contain secondary spirals termed as
small-scale spirals. The behaviour of these small-scale spirals
and other flow phenomena are investigated from the results of
three cases of unsteady flow: (i) flow in steady free stream
velocity; (ii) flow perturbed by resonance frequency; and (iii)
flow with forced perturbation.

1. Introduction

Flow in the separated and reattached regions along a body
is characterized by a separation bubble just between the
separation point and the point of reattachment. This kind of
flow has been recognized to be very important in engineering.
There have been many investigation of a wide variety of flow
configurations. Examples include the air around the heated
steel plate which has just moved out from the rolling mill; the
flow around a solar collector and the flow around roughness
elements of various shapes attached to a surface, such as the
fins of a heater exchanger and the blades of a gas turbine. The
vortex which is generated by the flow separation, has a strong
perturbing effect on the boundary-layer structure and
consequently it plays a significant role in fluid engineering
systems.

In order to investigate the problem of two-dimensional
vortex shedding around a cylinder of rectangular shape, earlier
researchers ( Clements (1973); Sarpkaya (1975); Kiya, Sasaki
& Arie (1982); Nagano, Natto & Takata (1982)) approximated
the free shear layer by a discrete-vortex model and predicted
the dominant feature of the flow. Furthermore, Thompson &
Hourigan, (1986) combined finite-difference and discrete-
vortex techniques to investigate an acoustically perturbed two-
dimensional separated flow around a heated plate and
predicted a number of features concerning to the separation
flow and the heat transfer coefficient.

The above discrete vortex methods, with a variety of
numerical approaches, give steady state results which are in
good agreements with experiments. The aim of this work is to
investigate the mode of transient flow in the area between the
points of flow separation and reattachment with the vortex
sheet method suggested by Soh, Hourigan & Thompson
(1988).

2. Mathematical description of the model

Consider a semi-infinite plate with finite thickness and
square leading edge which is aligned parallel to a uniform
approaching stream. The shear layers shed from the front
comners of the plate are approximated by arrays of voriex sheet
elements. The motion of the shear layers is represented by the
evolution of these elements in time. The velocities of a vortex
sheet element consists of a component from the two-
dimensional irrotational potential flow around the plate and a
component which is induced by the all vortex sheet elements.
These velocities can be calculated with the help of the
Schwarz-Christoffe] transformation.

4.13

2.1 Schwarz-Christoffel transformation

In the physical plane, there is a semi-infinite plate of
thickness 2h which extends to infinity along the positive real
axis, By using the Schwarz-Christoffel transformation, the
region outside of the semi-infinite plate in the physical plane
(z-plane) can be mapped onto the upper half of the

transformed plane (A-plane) as represented by equation (1).
The corners on the plate B and C, at z=t ih, are mapped into
A=t 1, respectively.
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2.2 Discretization of a vortex sheet

Computations are carried out in the transformed plane (A-

plane). The image of the vortex sheet, in the A-plane, is
discretized into N number of small straight vortex sheet

elements such that the jth element has a vorticity 7j distributed
over its length Asj. The other parameters associated with each
element are: the angle of inclination with the real axis, 9j, and
the pivotal point being the mid-point of the element - denoted
Aj, which is zj in the physical plane. The flow separation from
the right-angled corners of the leading edges is computed by
applying the Kutta condition to the separated shear layer,

which is represented by a vortex sheet. The vorticity density vj
is assumed to be uniformly distributed in each element.

2.3 The velocity

The configuration of the flow consists of a free stream and
a vortex sheet attached to the leading corner B of the plate.
The free stream has a magnitude of Ug and is parallel to the

real axis. The complex velocity for a point Aj which has a
complex potential, , is given by
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The integration is along the length of the elements, s, with
local origin on each pivotal point. The limits of the integration
AsJ'+1 /2 and Asj_1/5 are the distances between the pivotal
point and the edges of the element, so that the jth element has
a length of Asi= Asj+1/2+ Asj-1/2. Subscript I represents the
vortex sheet in the first quadrant of the transformed plane and
the appropriate images in the second, third, and fourth
quadrants.

2.4 Determination of the initial distribution of
vorticity

The vortex sheet method, unlike point vortex method
which usually starts with one vortex, needs to begin with an
array of elements. It becomes necessary to prescribe the shape
and distribution of an initial vortex sheet just to initiate the
computation.

A short vertical vortex sheet with one end attached to the
separation point, a corner of the plate, is considered. The
distribution of vorticity density is given by

T(6%) = 2Ks* (1-5%2)-1/2 ®)

where s* is the distance of the vortex element from the

separation point and y* is the given strength of vortex
elements. Since the Kutta condition requires that the flow in
the A-plane is stagnation at A = £ 1, this is expressed as
d
L atA=z1 (6)
di
Equation (6) can be satisfied by an appropriate value for K
and this determines the function ‘Y*(s*) in equation (5).

2.5 The Kutta condition: calculation of the
generated circulation from a corner

Two methods have often been used in the vortex methods
for determining the strength of a nascent vortex and its
position. In one methed, the nascent vortex is placed at a
certain fixed point and its strength is determined by satisfying
the Kutta condition. In the other, the strength of the nascent
vortex is determined by a simplified concept of boundary layer
theory and its position is found by satisfying the Kutta
condition.

Clements (1973) considered that the velocity at separation
points would be zero to satisfy the no-slip condition. Hence
the vortex which leaves the separation point is determined by
the velocity U'g at the outer edge of the boundary layer. The
rate of vorticity shedding into the shear layers is determined
by the relationship dl"/dt:O.SU'sz. On the other hand,
Sarpkaya (1975) stated that the rate at which vorticity is shed
into the wake is given by
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where 8 is the boundary-layer thickness. This may be closely
approximated by

ar" _ 1 1
o7 T 7 & £ R
(8)
where V, and V, represent the velocities at the outer and inner

edges of the shear layer. He introduced a 'nascent vorlices',
also called 'Kutta vortices', near the edge of the plate so thiat at

the start of each time step the Kutta condition is satisfied at the
edge.

The present method uses the concept stated in equation (7).
Writing VIN as the numerical approximation of V| in equation
(8), and GN as the circulation in the nascent element, the
result is

GN = ,} VINZ At ©

The negative sign is related to the direction of the generated

circulation which is positive for counter-clockwise and At is
the time increment. The no-slip condition is satisfied exactly
only at the instant of the introduction of each new vortex. it
ceases to be valid during the remainder of the time step by the
very nature of discretization.

2.6 Outline of computaition

The computational steps are summarized as followings:
1) Initially a straight vortex sheet, consists of 10 elements

with As equals to 0.01, is placed at 600 to the real axis for the
A-plane. The vorticity distribution is given by equation (5).

2) The velocity VIN is the image velocity in the A-plane at
A=1. 1t is calculated from equation (2) and resulted in the
formula: VIN= ldw(L)/dA].ldA/dzI2. The time step is calculated
by the formula: At=As/VIN.

3) The pivotal points in the A-plane is displaced to a new
position over a time step At, by the Euler integration formula:

Aj(t+An) = lj(t)+(u'().)dt-iVj(A.))At. The edges of each element
are transported in the same manner except that their velocities
take the form of the average between the two adjacent pivotal
points. The edge of the element at the free end of the vortex
sheet moves with the pivotal point of the element.

4) The circulation , AT, of the nascent vortex element is AT =

- 0.5VINZ At. ;

5) The process of rediscretization as given by Fink & Soh
(1978), which readjusts all elements into equal length, is used
once per 10 time steps.

6) A new element of length As is generated from the
separation point and becomes part of the vortex sheet.

7) The steps from (2) to (6) are repeated as many times as
needed.

3. Results and discussion

The flow is symmetrical about the real axis. Normalization
of parameters is achieved by setting h and Up to unity.

3.1 Case 1: Flow in constant free stream velocity

Figures 1 (a)~(b) show the situations of rolled-up vortex
sheet around the plate in the flow of constant free stream
velocity for t=2.356 and 2.701. The length of the element is
0.015 and the number of element, NE, are 447 and 614,
respectively. It is evident that the vortex sheet is rollin g up
into a large spiral. The free end of the vortex sheet is found
outside of the spiral. There are a few small-scale rolled-up
structures, small separation bubbles, within the large spiral.
The number of these small-scale spirals continue to increase
with time. The amalgamation between adjacent small-scale
spirals can be observed in these figures.

Amsden & Harlow (1964) explained these results in term
of "slip instability" in the flow. These small scale spirals also
represent local concentration of vorticities as reported by
Nagata et al. (1985). In their experimental observation,
Nagata et al. claimed that the turbulence in the vortex region is
caused by the centrifugal instability owing to the local
concentration of vorticity. The larger amount of vorticity shed
from the secondary voriex will give rise to a larger
concentration of vorticity which causes the shear layer to
undulate and roll up locally. It is suggested that this local
undulation in the free shear layer is related to the transition to



turbulent flow.

The penetration problem mentioned by Kuwahara (1973)
does not appear in the present results. From the diagrams of
roll-up vortex sheet in figures 1 (a)~(b), the vortex sheet,
which becomes a large rolled-up spiral structure, does not
penetrate the surface of the plate. There is a region next to the
free end of the vortex sheet which evolves and comes very
close to the surface of the plate. The distance between the
vortex sheet and the surface of the plate is about 0.02.

3.2 Case 2: Flow with perturbed shedding of
vorticity

A perturbation is achieved by introducing a sinusoidal
component. Thus, the circulation of the nascent vortex
element, GN™¥, is given by

GN* = GN (1+A sin 2nft) (10)
where

GN = 0.5 (VIN)2 At, is the result of Kutta condition,
see equation (9)
VIN = The velocity of the nascent vortex element
At =Time step
A = The amplitude of the oscillation
f =The frequency of the oscillation
t = Time

Figures 2 shows the evolution of the vortex sheet near the
upper corner of the plate at t=1.895. These results are derived

from f=0.07, A=0.1 and As=0.02. The corresponding
Strouhal number is 0.14. It lies in the middle of the resonance
ranges of 0.1 to 0.12 and 0.18 to 0.21 which are discovered
by Parker & Welsh (1983). The formation of numerous small
spirals throughout the whole of the roll-up vortex sheet is a
reminiscence of the observations by Prandtl (1904) and the
spark shadowgraph by Pierce (1961), the computed results by
Hama (1962). Pullin & Perry (1980) regard the appearance of
these patterns is essentially caused by the unstable nature of
the free shear layer as well as the interference by an apparatus.
In the investigation of a starting flow behind a triangular prism
in uniform and stratified flow, Huhe et al. (1983) observed
small spirals within the roll-up vortex sheet and stated that the
vibrations of the apparatus was the cause of this instability.

Kelvin-Helmholtz instabilities in the vortex sheet will lead
to the formation of small-scale spirals as shown in case 1.
Any perturbations at resonance frequency, such as in this
case, will enhance the structure of these small-scale spirals. In
the perturbed shedding of vorticity, the spacing between
adjacent small-scale spirals increases with respect the arc
length from the point of flow separation.

The movements of these small-scale spirals can be
presented by plotting the arc length of the spiral from the point
of flow separation against the index of the spiral. The index is
an integer which identifies the spiral. An index of 1 represents
the spiral nearest to the point of flow separation. The plots for
various time, as shown in figure 3, are normalized by scaling
such that the arc length to the first spiral becomes a unity.
These curves form an envelop which is the steady state line. Tt
is interesting to note that the plot for Pierce's spirals fall on
this envelop. This plot of spiral index is a convenient way for
comparing the patterns of small-scale spirals from different
sources.

A check on the core of the roll-up large spiral shows that it
travels at a velocity 0.59Ug,. Although this is 18% higher than
0.5Ug which was measured by Pierce in the shedding of free
shear layer from the edge of a plate in the impulse motion, it is
still within the range (0.5-0.6) Ug reported by Kiya (1986).

3.3 Case 3: Flow with small oscillation in the free
stream

A perturbation component is introduced into the free
stream, U*, as shown in equation (11).

U* =Up (1+A sin 2nft) (11)

where Ug is the mean velocity and is set to unity. Figure 4

shows the results for A=0.1, f=0.24 and As=0.02. The
corresponding Strouhal number is 0.48 which is outside the
resonance range. The forced oscillation has generated small-
scale spirals. However, unlike the small-scale spirals in case
2, they only survive for a short time before being engulfed by
the large roll-up vortex sheet spiral. Only four small-scale
spirals can be maintained as shown in figure 4. The overall
structure of the large vortex sheet spiral seems to be
unaffected by Strouhal number. The core is found to travel at
a velocity of 0.60Ug as compares with 0.59 U in case 2.

4. Concluding remarks

The shedding of vorticity over a semi-infinite plate have
been numerically studied by using a vortex sheet technique.
This includes three cases of unsteady flow: (i) flow in
constant free stream velocity, (ii) flow with perturbed
shedding of vorticity at resonance frequency, and (iii) flow
with forced oscillation of the free stream.

Unlike vortex sheet from an elliptical loaded wing which
has a strong tendency to roll up, Fink & Soh (1978), the
present flow system restricts a vortex sheet to a region near
the surface of a plate and this restriction gives rise to a slower
rolling up motion. The consequence is the formation of small-
scale spirals within the large roll-up vortex sheet. These
structure of small-scale spirals, which are suspected to be
caused by Kelvin-Helmholtz's instability, become very
prominent when the flow is perturbed under resonance
frequency. Forced periodical perturbation may also give rise
to these small-scale spirals but they soon disappear into the
large roll-up vortex sheet.

A calculation using the perturbation as in case 2 but with a
Strouhal number equals 0.48, shows results very similar to
that of case 3. It can be concluded that the frequency of the
perturbation is by far more influential to the mode of flow
separation than its sources. This has been been demonstrated
by Stokes, Welsh & Hourigan (1986) in their simulation of
acoustic excitation using the correct frequency but with a
different source of excitation.

The size of the separation bubble can be examined by
plotting Xr, the distance of the stagnation point from the point
of flow separation, against time, t, as shown in figure 5. It is
evident that the loci of the stagnation points for all three cases
are identical and, with the exception of near starting time, all
fall into a straight line given by

Xr =0.224 + 0.966 t (12)

This indicates that the initial growth rate of the separation
bubble is constant, 0.966U, and is also independent of the
Strouhal number.

Numerical accuracy is important for these results. The size

of the element, As, should be less than 0.05 in order to givea
reasonable resolution for the simulation of small-scale spirals.

Results shown here are calculated by using As in the range
from 0.01 to 0.03.

It is found that the movement of the vortex sheet is very

small over the prescribed time step, At. In order not to inhibit
the growth of the vortex sheet, it is necessary to make the
crrors caused by the rediscretization process to be at least an
order smaller than the actual displacement of the vortex sheet.
This requirement can be fulfilled by applying the
rediscretization process once in every 10 time steps.
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Figure 4 The evolution of the vortex sheet around a semi-
infinite plate in the flow with smail oscillation of the
free stream at t=1.732.
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Figure 5 The relationship between the reattached length, Xr,
and time, t.



