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ABSTRACT

The 37%-order analysis of Perry and Morrison (1971)
was exténded to 7t*-order by Watmuff (1987) by including
both the bridge capacitance and the frequency response
characteristics of the feedback amplifier. In this paper the
bridge capacitance has been excluded from the analysis.
The influence of the gain K, roll-off frequency f. and off-
set voltage E,; of the feedback amplifier are examined in
more detail together with their interactions with the bridge
inductance.

INTRODUCTION

Attempts to increase the overall frequency response of
a hot-wire system by increasing the gain and frequency re-
sponse of the feedback amplifier are invariably frustrated
because the system develops instabilities. While some of
these instabilities can be explained by the 37%-order model
of Perry and Morrison (1971) others appear to be of higher-
order and cannot be accounted for. Some workers have
reported difficulty obtaining system stability when using
subminiature (e.g. d=0.6xm) hot-wire probes, e.g. Miller,
Shah and Antonia (1987). With these small wires the fre-
quency response is usually more than adequate and of sec-
ondary importance compared to the frequent probe break-
age caused by the instabilities. Tt appears that the dy-
namics of the constant temperature hot-wire anemometer
are not sufficiently well understood. Yet a more complete
understanding could possibly lead to ways of avoiding in-
stabilities and achieving a higher frequency response.

MODEL WITH AMPLIFIER FREQUENCY RESPONSE

Watmuff (1987) derived a 7**-order model based on
the configuration shown in figure 1. In this paper the ca-
pacitance is excluded from the analysis and the frequency
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Figure 1. Schematic of constant temperature hot-wire
anemometer used by Watmuff (1987) to derive a 7**-order
model. In this paper Cy = Cj = 0 i.e. system is 5*-order.
All results use B, = 1000, R, = 100002 , R, = 1601 and
M, =0and M; = M; = M. Platinum filaments, length =
Imm, diameter= 5um (i.e. B, =~ 80), U= 20m/s.

response of the amplifier f, is assumed to be flat through
to a simple 2nd-order roll-off i.e.

€ _ K
e;  (Ms+1)(Ms+1) (1)

This leads to 5'*-order transfer functions for velocity fluc-
tuations u’ and offset voltage perturbations e, i.e.

eo _ KzR,(Lys+ B, + R.)

v A(S) (2)
e _ KB(s)
e Als) (3)

where z is a constant associated with the wire sensitivity
(see Perry and Morrison 1971) and
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Figure 2. Calculated s-plane trajectories (2"%-quadrant
only) of dominant poles with increasing offset voltage Eyi.
Inductor values Ly = 8uH, L,, = 1uH, amplifier frequency
response f4 =~ 79.6kHz and gain K=1000 are constant.
Point f4 = oo corresponds to model of Perry and Morri-
son (i.e. M = 0) for conditions at point 1. Square-wave
response for operating points 1 to 5 also shown. Line ¢=0.6
shows optimum damping for complex poles.
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Als) = Ass® + Ays’ + Ass® + AasT + Ars+ Ao (4)

B(s) = C3s® + Cp8® + Cis+ Co. (5)
The coefficients of the polynomial A(s) are given by,
AU 1 0 0 0 C.P.’O
A, 2M 1 0 0 Co Ck1
A | _ M?* 2M 1 0 C, LK Cka
A: | | o M2 2mM 1 Cs 0
Aq 0 0 MZ 2M Ca 0
As o 0 o M*? 0

(6)
Cg---Cs and Cgq---Cko are constants that depend on
the operating point and system parameters:

Co= (R + R.)(Ra + Ry + )
Cy = (Ru + Ru + @)Ly + (Ry + R) [(Ra + Ru) T + Lu
Cz2 = [(Ra + Ruw)Tw + Lu| Ly + (Rs + Re) Ly Tw
Cs.= IaLuTi
Cko= (fi‘ + R.0)
Cx1 = (RTy + ReLw — RaLy)
Ckaz = Tw(R.Ly — RoLy) (7)

R = RuR. — R.R; is the bridge imbalance and a =
Ry(Ryw — Ry)/R,; where R, is the wire resistance at gas
temperature. T, is the lumped time constant of the wire
filament arising from its thermal inertia. The transfer func-
tions (2) and (3) are identical to those derived by Perry and
Morrison for M = 0.

AMPLIFER OFFSET VOLTAGE

The results of a systematic parametric study suggest
that two types of dominant pole s-plane trajectories are
ohserved as the amplifier offset voltage Ey; is varied. The
type of trajectory depends on the nature of these poles when
f4  oc. The effect of varying E,; on the higher-order poles
is usually very small.

An example of the first type of trajectory is shown in
figure 2. As E,; is increased poles A and B move towards
the real axis where they meet and split to form two sim-
ple poles. With further increases of Eg;, simple pole C
continues moving towards the origin and eventually merges
with simple pole B to form a new complex conjugate pair.
However pole A remains closest to the origin so that it dom-
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Figure 3. Bode diagrams and step-response lor point |5
in figure 2 where Eg; =100mV, (a) and (b) offset voltage
perturbations e, (c) and (d) for velocity fluctuations u'.

inates the frequency response. This behaviour is typical of
systems in which the dominant poles remain complex as
fa — co. Note that the ringing frequency of the square-
wave response is around 320kHz at operating point 5 shown
in the figure but the simple pole A limits the system fre-
quency response to about 3.6kHz. The Bode diagrams and
the step-response shown in figure 3 clearly demonstrate why
this type of behaviour is undesirable.
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Figure 4. Same as figure 2 but with Ly = 0.5pH and
L, = 0.1uH. Despite the different s-plane trajectories the
end result is much the same as in figure 2 for large E,;.

L/ Lo 4
05 14.0
g

Bé 12.0 —~
(]

S

el

o

[

10.00

. =
¢=0.6 93
8.0 -3

\4

_10m
.410“1 o= e

B Ei=1'5m
sV

OPTIMUM RESPONSE

o (x10° s™)

Figure 5. Same as figure 4 where Ly, = 0.1pH and Lyo =
(Re/Ra)Lw = 1pH. Trajectories for Ly/Lyo= 0.5, 1, 2, 3, 4
and 5 also shown. Dashed line shows locus of points where
poles A, (B) and C have equal characteristic frequencies.
Having E4; and Ly as the only tunable parameters leads to
an optimum response when Ly > L.
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An example of the second type of trajectory is shown
in figure 4. With increasing F,; poles A and B remain com-
plex conjugate while simple pole C moves towards to the
origin and eventually dominates the system frequency re-
sponse. This behaviour is typical of systems which possess
only simple poles when f4 = oco. Despite these different
trajectories the end result is much the same as in the first
example and the system possesses similar Bode diagrams
and step-reponse characteristics.

Many of the rules frequently given for estimating the
frequency response from square-wave tests assume a 2’“3-_
order approximate response. While the square-wave test is
an invaluable aid for tuning hot-wire systems it is open to
misinterpretation as shown above. This type of behaviour
can be observed in real systems over a wide range of bal-
ance inductor and offset voltage settings. The only way to
reproduce these observations in the model is to include the
effects of amplifier frequency response.

__Increasing fo = Increasing K

fa (kH2)  fo (kH3) K Jo (kHz)
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o 3068 1012 31.8
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Figure 6. Calculated s-plane trajectories of system poles for
increasing f4 (with constant K=1000) and for increasing K
(with constant f4 ~ 79.6 kHz). E,; =12.5mV, Ly = 5uH
and L, = 40pH. (a) Dominant poles (b) Higher order poles.
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BALANCE INDUCTOR

The analysis of Perry and Morrison predicts instabil-
ity when the balance inductor Ly is in excess of the value
required for a.c. bridge balance Lyq. However systems with
finite frequency response amplifiers can be stable in this sit-
uation. More significantly, having control of only Ejy; and
Ly leads to an optimum system response when Ly > Leo.
For example, the system in figure 5 has an optimum re-
ponse when Ly = 1.5Lyo. However if Ly is too large it may
be impossible to obtain a satisfactory response.

AMPLIFIER FREQUENCY RESPONSE AND GAIN

Analysis predicts that the frequency response of hot-
wire systems fop — co in the limits of f4 — o0, K — oo,
Eg; — 0 and Ly — Leo. Smits and Perry (1980) observed
that hot-wire systems are prone to instabilities as Ly~ Lo
since there is an extreme sensitivity to very small variations
in L;. However this observation was made for 374 order
systems where f4 = oco. Systems with finite frequency
response amplifiers have an optimum frequency response
when Ly > Lyo and stability can be maintained even when
Ly is excessively large. Nevertheless one might suspect that
the form of dominant pole instability described by Smits
and Perry would eventually occur as f4 is increased. How-
ever the results of a systematic parametric study suggest
that other higher-order instabilities are more likely to arise

Ja (kH3)  fo (kH1) K Jo (kH3z)
15.9 21.0 200 16.9
98.4 2781 1210 2691
107.5 24.3° 1918 21:3Y
520.4 18.7 1 25400 18.5 1
© 17.9 101? 18.3
t Dominant complex poles transformed into simple poles. )
* Higher-order poles transformed into complex conjugates. %
t Higher-order’ poles become unstable. b4
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Figure 7. Same system as figure 6 but Eg increased to
20mV. Calculated s-plane trajectories of system poles for
increasing fu (with constant K=1000) and for increasing
K (with constant f4 » 79.6 kHz). (a) Dominant poles (b)
Higher order poles.



beforehand as shown in figures 6'and 7. This behaviour is
typical of constant temperature hot-wire systems with finite
frequency response amplifiers. The effects of increasing K
and f4 are quite similar and unexpectedly lead to increased
damping of the dominant poles. It is the higher-order poles
that are responsible for the system instability.

The higher-order poles exert very little influence on
the overall system frequency response and stability pro-
vided that they remain stable. However the damping of
the higher-order poles is often difficult to determine dur-
ing a square-wave test, even when they are grossly under-
damped, since the oscillations can still decay rapidly when
compared to the response of the dominant poles. However
a small change in either K or f, from this point could re-
sult in instability. This type of higher-order instability can
occur suddenly and without warning to the anemometer
operator who can only observe the square-wave response.
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Figure 8. Calculated s-plane trajectories of the dominant
poles for a range of wire diameters with the same length
to diameter ratio. Ry has been adjusted to closely give the
same resistance ratio i.e. R = 2. E,; = 5mV, L;=0.5
puH and L,,=0.1 pH. (a) Increasing f4 (with constant gain
K=1000). (b) Increasing K (with constant f4 = 79.6kH z).
Higher values of K and f,4 are required for stability as the
wire diameter is reduced.

INSTABILITIES AND SUBMINIATURE WIRES

For fixed amplifier characteristics the ratio of the am-
plifier time constant to the wire time constant is consid-
erably larger with subminiature wires. This is especially
significant since it has been demonstrated that the domi-
nant poles become less damped as f4 is reduced. If f4 is
too small then the dominant poles may be unstable. Fig-
ure 8 shows the effect of reducing the wire diameter while
maintaining the same length-to-diameter ratio (1:200) and
the same resistance ratio R =~ 2. Higher values of f4 and K
are required for stability as the wire diameter is reduced.
The effect on the higher-order poles is similar to figures
6(b) and 7(b) and is not shown.

The wire current required for a given resistance ratio
is smaller for subminiature wires so that the static output
voltage at the top of the bridge is considerably less than
that obtained with more usual sized wires. Increasing the
bridge resistor values would help to restore the size of the
output signal. However this is not recommended since in-
creasing R, and R, reduces the damping of the dominant
poles as shown in figure 9. An even higher frequency re-
sponse amplifier would be required to maintain stability
under these conditions.
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Figure 9. Increasing upper bridge resistors R, and R.
causes dominant poles to become less damped. Sub-
miniature platinum filament of length 0.1mm and diam-
eter d=0.5um ( R, ~ 800). Largest values of R,/R,, and
R/ R, are approximately the same as for the d=5um wires
in figures 1 to 8. Ly = 8uH, L, = 1puH, R, = 1.6kf] and the
amplifier frequency response f4 = 1.6MHz, gain K=1000
and offset voltage E,; = 5mV are constant. Air velocity is
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