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ABSTRACT

An algorithm for the solution of the incompressible
Navier-Stokes equations in three-dimensional generalized
curvilinear coordinates is presented. The algorithm can be
used to compute both steady-state and time-dependent flow
problems. The algorithm is based on the method of artifi-
cial compressibility and uses a higher-order flux-difference
splitting technique for the convective terms. Time accuracy
is obtained in the numerical solutions by subiterating the
equations in pseudo-time for each physical time step. The
equations are solved with an unconditionally stable line-
relaxation scheme. Computational results for the steady-
state solution of flow through a square duct with a 90° bend
and for flow through an artificial heart configuration with
moving boundaries are presented.

INTRODUCTION

Numerical solutions to the incompressible Navier-
Stokes equations are in greater demand than ever before as
the field of computational fluid dynamics (CFD) increases
its impact as an engineering tool. Problems which can be
addressed by the incompressible Navier-Stokes equations
include low-speed flows in aerodynamics, internal flows in
propulsion, and even problems in biomedical fluid anal-
ysis. The more efficient a is, the more useful a tool it
will be for analysis. Therefore, there is a continuing in-
terest in finding solution methodologies which will produce
results using the least amount of computing time. This
is particularly true for unsteady, three-dimensional (3-D)
problems. Time-accurate solutions of the incompressible
Navier-Stokes equations are most time consuming because
of the elliptical nature of the governing equations. A distur-
bance at one point in space affects the entire flow domain
instantaneously. This requires that the numerical algorithm
propagates information through the entire flow domain dur-
ing one discrete time step.

The current work involves an extension of the two-
dimensional (2-D) flow code developed by the Rogers et
al. (1988) into 3-D. The algorithm is based on an arti-
ficial compressibility approach, which directly couples the
pressure and velocity fields at the same time level, and pro-
duces a hyperbolic system of equations. This makes possi-
ble to use some of the upwind differencing schemes which
have recently been developed for the compressible Euler and
Navier-Stokes equations. Using the method of Roe (1981)
the convective terms are differenced by an upwind method
that is biased by the signs of the eigenvalues of the local
flux Jacobian. In the current formulation the set of numeri-
cal equations are solved using a nonfactored line relaxation
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scheme.

In the following sections, the details of the artificial
compressibility scheme and its use in solving the incom-
pressible Navier-Stokes equations for steady-state and time-
dependent problems are given. The upwind-differencing
scheme is detailed, and then the implicit solution proce-
dure is discussed. Computed results are presented for the
flow through a curved square duct and for the unsteady
flow through an artificial heart configuration with a mov-
ing boundary.

GOVERNING EQUATIONS

The governing equations for incompressible, constant
density flow are written in conservative form in generalized
coordinates as
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where 1 is the vector of the velocity components divided
by J, 7 represents the right-hand side of the momentum
equations, J is the Jacobian of the transformation, &, fa
are the convective fluxes, é,, fy,§» are the viscous fluxes,
and U, V, W are the contravarient velocities.

STEADY-STATE FORMULATION

The artificial compressibility relation is introduced by
adding a time derivative of pressure to the continuity equa-
tion
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where p is the pressure. In the steady-state formulation the
equations are to be marched in a time-like fashion until the
right-hand side 7 in Eq. (1) and the divergence of velocity
converges to zero. The time variable for this process no
longer represents physical time and so in the momentum
equations £ is replaced with 7, which can be thought of as
a pseudo-time or iteration parameter. Combining Eq. (2)
with the momentum equations gives the following system
of equations
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where R is defined here as the residual vector of these equa-
tions and where
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The pseudo-time derivative is replaced by an implicit Eu-
ler finite-difference formula and the right-hand side is lin-
earized resulting in
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where a superscript n denotes quantities at the nth pseudo-
time iteration level and where I is a 4 x 4 identity matrix
and where D = JD. If this equation were solved exactly
as it is, then for very large At this would become a New-
ton iteration for a steady-state solution. However, it is not
feasible to form the exact Jacobian of the residual vector
R. Before these details are discussed, however, an equation
similar to Eq. (6) for time-dependent problems will be de-
veloped.
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TIME-ACCURATE FORMULATION

In the time-accurate formulation the time derivatives
in the momentum equations are differenced using a second-
order, three-point, backward-difference formula

3art! —gan +an!

2A1

— _T-;TH-I

(6)

where the superscript n denotes the quantities at time ¢ =
nAt and 7 is the right-hand side given in Eq. (1). To
solve Eq. (7) for a divergence free velocity at the n+1
time level, a pseudo-time level is introduced and is denoted
by a superscript m. The equations are iteratively solved
such that 4"+ approaches the new velocity 4™*! as
the divergence of 4™*1™*+! approaches zero. To drive the
divergence of this velocity to zero, the following artificial
compressibility relation is introduced:
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where 7 denotes pseudo-time and f is an artificial com-
pressibility parameter. In this form it can be seen that the
constants § and At are not independent. However, they
are kept separate here primarily because of the following
reason. In the numerical equation which approximates the
previous partial differential equation, the change in pres-
sure becomes a nonlinear function of B because of the use
of upwind differencing. Therefore, in the numerical equa-
tion, A and At become independent.

Combining Eq. (7) with the momentum equations and
linearizing gives the following equation in delta form
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As can be seen, Eq. (8) is very similar to the steady-
state formulation given by Eq. (5). In a sense the time-
accurate formulation requires the solution of a steady-state
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problem in order to advance one physical fime step. Both
systems of equations will require the discretization of the
same residual vector R. The derivatives of the viscous
fluxes in this vector are approximated using second-order
central differences. The formation of the convective fluxes
is not such a simple matter and is the subject of the next
section.

UPWIND DIFFERENCING

Upwind differencing is used to numerically compute
the convective flux derivatives. Flux-difference splitting is
used here to structure the differencing stencil based on the
sign of the eigenvalues of the convective flux Jacobian. The
scheme presented here was originally derived by Roe (1981)
as an approximate Riemann solver for the compressible gas
dynamics equations.

The derivative of the convective flux in the { direction
is approximated by
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where EH.]/Q is a numerical flux and ¢ is the discrete spatial
index for the ¢ direction.

The numerical flux is given by
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where the ¢;11/2 is a dissipation term. For ¢ip1/2 = 0
this represents a second-order central difference scheme. A

first-order upwind scheme is given by
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a third-order scheme is given by
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where AE¥ is the flux difference across positive or negative
traveling waves. This is computed as
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where the A operator is given by
ADiyap2 = Diya — D;

The plus (minus) Jacobian matrix has only positive (nega-
tive) eigenvalues and is computed from

A% = XATXTT Af = %(Al A1) (14)
where the subscript 1 denotes matrices corresponding to the
¢-direction flux. The matrices X; and X; ' are the right
and left eigenvectors of the Jacobian matrix of the flux vec-
tor, and A is a diagonal matrix consisting ofits eigenvalues.
All matrices appearing in the upwind dissipation term must
be evaluated at a half point (denoted by i4+1/2). To do this
a special averaging of the dependent variables at neighbor-
ing points must be performed. The Roe (1981) properties
which are necessary for a conservative scheme, are satisfied
if the following averaging procedure is employed

D= %(Dm +Dy) (15)



IMPLICIT SCHEME

The Egs. (5) and (8) are numerically represented and
solved using a Gauss-Seidal line-relaxation scheme similar
to the one used by MacCormack (1985) and Chakravarthy
(1984). Approximate Jacobians of the residual vector re-
sulting from first-order upwind-differenced fluxes are sub-
stituted for the 2& term on the left-hand side. Instead
of factoring this banded matrix, it is approximately solved
using a line-relaxation. Using this, a sweep direction is
chosen and all terms on the left hand side from points off
this sweep line are multiplied by the latest known AD and
moved to the right-hand side. The resulting set of equa-
tions is a tridiagonal system of 4 x 4 blocks. This system is
solved is for each line as the domain is swept several times.

COMPUTED RESULTS

Presented here are the results of two different laminar
flow computations. These are the flow through a square
.duct with a 90° bend, and the flow through an artificial
heart. The computing times reported here are the CPU
seconds used on a Cray 2. For these problems it was found
that the implicit scheme remained unconditionally stable,
and so all of the 1/A7 terms were set to zero.

Square Duct With 90° Bend

The flow through a square duct with a 90° bend was
used as a steady-state test case. This particular geometry
was studied experimentally by Humphrey et al (1977) which
enables comparisons to be made with the current computed
results. Four different grids were used whose dimensions
are 31 x 11 x 11, 41 x 21 x 21, 51 x 31 x 31, and 61 x
41 x 41. The problem was non-dimensionalized using the
side of the square cross-section as the unit length, and the
average inflow velocity as the unit velocity. The Reynolds
number was 790 and 3 was set to one. The straight inflow
‘section before the bend was set to a length of five as was
the outflow section downstream of the bend. The radius
of curvature of the inner wall in the curved section was 1.8
units in length. The inflow velocity profile was prescribed
to be that of a fully developed laminar straight square duct
as given by White (1974).

The convergence for all four grid cases is nearly iden-
tical. The maximum residual drops to machine zero in less
than 300 iterations for all cases. The solution is considered
converged if the maximum residual has converged at least
four orders of magnitude. This is is obtained in less than
115 iterations for all four cases, The computing time re-
quired to obtain a converged solution for each of the four
cases are 32, 196, 550, and 1067 sec, respectively. The com-
puted results are compared to the experimental results of
Humphrey et al. (1977) in Fig. 1. Shown are the longi-
tudinal velocity profiles at various streamwise stations for
two different cross-flow locations. In Fig. la, the velocity
profiles are taken at z=0.25, that is half way between the
x-y plane wall and the x-y symmetry plane. The second
location, shown in Fig. 2b, is from the x-y plane at z=0.5,
or the x-y symmetry plane. In each of these figures, the
profiles are shown at x=0 (the inflow boundary), at x=2.5
and at four positions in the curved section corresponding
an angle of 0, 30, 60, and 90.° The symbols represent the
experimental results and the lines represent the computed
solutions. The computations for the two finest grid cases
are seen to be in very good agreement with each other, in-
dicating that these represent a grid-independent solution.
Good comparison is seen between the computation and the
experiment.
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Fig. 1 Streamwise-velocity profiles at x=0, x=2.5, § =
0°,8 = 30°,8 = 60°,8 = 90°. Solid line = 31x11x11 grid,
dash line = 41x21x21 grid, dotted line = 51x31x31 grid,
chain-dot line = 61x41x41 grid, and o = experiment.

Artificial Heart Flow

The present flow solver has been used to compute the
flow inside an artificial heart which was designed by Penn'
State University and has been studied experimentally by
Tarbell et al. (1986). The purpose of the current calcula-
tions is to demonstrate and analyze the present capability
to compute a time-accurate incompressible flow through a
complex internal device with moving-boundaries.

Outflow Valve

Inflow Valve
Fig. 2 Artificial-heart geometry showing valve openings.

The geometry used for the current model is depicted in
Fig. 2. The heart is composed of a cylindrical chamber with
two openings on the side for valves. The pumping action is
provided by a piston surface which moves up and down in-
side the chamber. The diameter of the piston is 7.4 cm, with
a stroke length of 2.54 em. The problem was nondimension-
alized with a unit length of 2.54 cm and a unit velocity of
40 cm/sec. The actual artificial heart has cylindrical tubes
containing tilting flat disk valves extending out of each of
the side valve openings. In the computational model these
valves are not modeled, instead the boundary conditions at



the side openings are specified to instantaneously open and
close at the right moment. This simplification allows a sin-
gle zone to be used to model the flow inside the chamber.
The flow is assumed laminar, and the Reynolds number
based on the the unit length and velocity is set to 100. In
the actual heart the Reynolds number is about 600, and re-
gions of the flow are turbulent. The fluid is also assumed to
be Newtonian. This corresponds to the experiment of Tar-
bell et al. (1986) who used a water and glycerin fluid whose
viscosity is nearly the same as blood, about 3.5 centipoise,

but unlike blood exhibits Newtonian fluid behavior.

3a. Computation

3b. Experiment

Pig. 3 Incoming particle traces from computations and pic-
ture of experimental results showing incoming fluid.

Inside the heart an H-H grid topology with dimensions
of 39 x 39 x 51 is used. The surface grid was generated using
a biharmonic grid generator over several sections. The inte-
rior points were filled using an algebraic solver coupled with
an elliptic smoother. As the piston moved up and down in-
side the chamber, the grid points below the valve openings
were compressed and expanded, respectively. Thus a new
grid was generated at each time step.

The flow was computed using a time step At of 0.025,
and a 8 of 500. The piston moved with a constant nondi-
mensionalized velocity of +0.2 between it’s top and bot-
tom positions, requiring 200 physical time steps for one
period of the piston’s motion. During each time step, the
subiterations were carried out until the maximum residual
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converged dropped below 1072 or until a maximum of 20
subiterations were used. During most of the piston’s cycle
only 12-15 subiterations were required, but when the piston
was changing directions, it did not completely converge in
20 subiterations. The computing time required for each pe-
riod of the piston’s motion was approximately four hr. The
computations were run for four periods during which time
particle paths were computed after being released near the
inflow valve.

Figure 3a shows some computed particle traces as the
piston nears it’s bottom position. Two distinct vortices are
seen to have formed from the flow separating as it enters the
chamber. Figure 3b shows an experimental photograph (J.
M. Tarbell: private communication, 1988) of bubbles enter-
ing the chamber as the piston nears it’s bottom position.
A similar two-vortex system is seen to form.

CONCLUSION

An algorithm for computing steady-state and time-
varying solutions of the incompressible Navier-Stokes equa-
tions has been presented. The method of artificial com-
pressibility allows the equations to be solved as a hyper-
bolic system in pseudo-time. This requires the solution of
a steady-state problem at each physical time step for the
time-accurate formulation. The use of upwind differencing
makes the system of numerical equations diagonally domi-
nant. With the use of a nonfactored implicit line-relaxation
scheme, the code can be run at very large time steps, and
very fast convergenceis seen. The results showed good com-
parison with experiment for the flow through a square duct.
The computations of the flow through an artificial heart
shows the capability of the code to simulate complicated
internal flows with moving boundaries within a reasonable
amount of computing time. Further advances in the con-
vergence speed of the algorithm will still be very helpful in
increasing the usefulness of this code as a design tool.
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