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Abstract

Turbulence models are known to have difficulty in flows
with strong rotation. In this paper we examine the effect
of rotation, using rapid distortion theory (RDT) for homo-
geneous turbulence as a guide. It is shown that rotation
significantly modifies the turbulent stress anisotropy in a
way not predicted by current turbulence models. The rea-
sons for this failure of models is argued to be a lack of
information about the turbulence structure. A new tensor
quantity, the structure tensor, is defined and shown to be
of critical importance in the rotation problem. The physi-
cal reasons for the effects of rotation are explained, and a
simple model that does display the effects is proposed.

1. Introduction

Rotation is known to reduce the dissipation rate, an ef-
fect only recently incorporated in some turbulence models
(Bardina et al. 1985). It had been thought (eg. Speziale
1981) that rapid rotation would cause a Taylor-Proudman
reorganization of turbulence into a two-dimensional (2D)
state, but a direct numerical simulation of isotropic turbu-
lence refuted this idea (Speziale et al. 1987).

A subsequent numerical simulation with an initially an-
isotropic field, by Mansour, produced the shocking result
that the anisotropy of the turbulent stresses was rapidly
reduced by rotation. This calculation, an example of which
is shown in Fig. 1, provided the primary impetus for the
present work. Similar effects have been obtained using

EDQNM (Cambon and Jacquin 1989).

Since the simulations are of necessity at low Reynolds
numbers, there was a suggestion that this might simply be
2 low Reynolds number effect. To check this possibility, an
inviscid RDT was carried out by the author with the help
of T.S. Shih, and this work showed that the observed effect
was due to inertial and not viscous effects. As we shall see,
this effect is not mirrored by current turbulence models.

This led the author to think long and hard about how
turbulence models models can be modified to incorporate
the effects of rotation, and ultimately to develop some new
ideas for turbulence modeling. The primary objective of
this paper is to report these new ideas.

2. Anisotropy modeling in homogeneous turbulence

Contemporary one-point turbulence models are based on
the transport equations for the turbulent stresses Ry =

uiu; The state of the turbulence is then characterized by

the turbulent kinetic energy ¢%/2, where ¢% = R;;, and the
turbulent stress anisotropy tensor

b = Fii = *8;/3
q? ’

ij (2.1)

For incompressible homogeneous turbulence the evolution
equation for b;; can be written as

; 2 2
by = —-éS,:_,‘;— (03K Sky+bkSk— EbnmSnm‘sij) +2bnm Snmby;
+(bix ks + bsk Qi)
1 1 €
+?[Tz‘j — (Dij — 3 Dribi)] + 2z (2.2)

Here S;; = (U;,; +Uj»;)/2 is the mean strain-rate, (;; =
(Us»5 —Uj,i ) /2 is the mean rotation-rate, T;; the pressure-
strain term, D;; the viscous dissipation term, and € is the
kinetic energy dissipation rate. Subscripts below commas
denote partial differentiation with respect to that coordi-

nate, and an overdot denotes 8/8t.

The pressure-strain term is split into a rapid part in-
volving the mean velocity gradients and a slow term involv-
ing non-linear turbulence interactions. The rapid pressure-
strain term may be expressed directly as

3
Ti[q) = 2Upy; (Mijpq + Myjpi) (2.3)
where
Mijpg = f koko g, (k) d’k (2.4)
ipg = | Tz I : :

Here E;;(k) is the turbulent velocity spectrum tensor. A
great deal of effort (including the author’s) has gone in to
developing elaborate models of M that meet various con-
ditions it is known to satisfy. In every case M has been
modeled in terms of b and ¢2, and invariably one has to
adjust remaining free coeflicients to match experiments.

One purpose of this paper is to point out that these mod-
els fail in one of the simplest building-block flows, namely
homogeneous turbulence subjected to mean rotation with-
out strain. In this case the most general model of this type
produces an evolution equation of the form

bij = C1(Qpsbrs + Vsbis) + Co(Ub}; + Dpjbfy)

+C30pg bighl; + bigh%) + ... (2.5)

Here the dots indicate dissipation and slow pressure-strain
terms that do not depend explicitly on the mean rotation
and which are not important for sufficiently strong rotation
rates. The coefficients are functions of the invariants of b,
namely II = —b;;b;;/2 and TII = b;;b;by; /3. Note that,
since {1;; is antisymmetric and all tensors formed from b;;
are symmetric, the mean rotation rate drops out of the
equations for these invariants. Hence, models of this type
predict no effect of rapid rotation on these invariants. As
we shall see, this is not correct; hence there ts a fundamental
flaw in the turbulence models.
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The basic problem is that b contains information about
the componentality of the turbulence, but does not con-
tain any information about its physical structure or dimen-
sionality. For example, if bj; = —1/3 then we know that

""1 = 0 everywhere, which means only that the turbulence

is two-component (2C). The other two components could
vary in one, two, or even 3 directions, so it is not correct
to conclude that the turbulence is also 2D. The problem
is especially acute for 1C turbulence, for which the M(b)
model displays a singularity arising from different possible
structures having the same b (Reynolds 1989).

3. The structure tensor

In order to provide some additional information to re-
solve this problem, we introduce the structure tensor,

Y:'j =W, ‘IJ;HJ" (3.1)
W/, is the vector stream function defined by
= €k Wos (3.2a)
and the auxiliary condition (Aris 1962)
‘I‘g,i =0. (3.26)
It is easily demonstrated that ¥} satisfies
'I‘,{-,ﬁ: ‘fijk"';;»j: —w}. (3.3)

For homogeneous turbulence,

kik;
Y= [ ﬁEnn(k)d"ik. (3.4)
Note that ¥;; = ¢%. If one of the principal values Yga
is zero, then there is no energy associated with any mode
for which ky # 0, and so the turbulence is independent
of zo. Thus, whereas R;; carries information about the
componentality of the turbulence, ¥;; carries information
about its dimensionality and eddy structure.

The anisotropy of ¥;; is given by the structure anisotropy

tensor
Y- g*6;;/3
Yi; = —-—-—qz A

Under arbitrary irrotational strain with Si; > S22 > Sa3
the vortex lines eventually become straight and aligned
with z1, and so the turbulence becomes independent of z;.
A value of Yoo close to —1/3 indicates that the energy-
containing eddies are relatively long in the z, direction,
while a value close to 2/3 would indicate that they are rel-
atively short in the zy direction.

RDT for arbitrary irrotational strain shows that y;; =
b;; at both the start and end of the deformation, which
suggests that y may not be essential in modeling of rapidly
strained flows. However, RDT for rotation of inhomoge-
neous turbulence (section 4) shows that y is unchanged and
that b;; is driven to —y;; /2. Therefore, y clearly should be
involved in turbulence models for rotating flows.

(3.5)

4. RDT for rotation of homogeneous turbulence

4.1 Evolution equations

We consider incompressible turbulence subjected to solid
body mean rotation given by

Uy =Tz Up = —Tz4q. (4.1)

The analysis is most easily done in a frame rotating with the
mean motion. Denoting the coordinates of this frame by
¢&;, time in this frame by 7, and the fluctuation velocities
in this frame by v;, the momentum equations under the

inviscid RDT approximations become

dv; 18p
—af == —';a—s. — 25.;:'3'(}3"]:‘ (4.2)
T
and the continuity equation is
g—?} =0. (4.3)
t)

The velocity field can be represented by a Fourier series
in a large box surrounded by replicates,

vi(€,7) = D tilk,7)enle (4.4)

where & is the wavenumber in the rotating frame, and the
sum is over all wavenumbers that fit the box. A similar
representation is used for p. The equations for the Fourier
amplitudes are then

do; 1, 2
-'# = ;K,.,‘p — 26353785 (4.5)

and continuity becomes
r;9; = 0. (4.6)
Applying (4.6), one finds

2I‘£§J'3E;ﬁj (4 7)

p= K'z

i

P

where &% = fc‘f + rc% + K%. Therefore,
db;

KK .
S5 = 2enms (;—2" — bin) - (4.8)

Statistical quantities describing homogeneous turbulence
are found by averaging over an ensemble of such flows and
allowing the box size to become infinite. In particular, the
spectrum tensor is given by

Eii(g,1) = ‘Blﬂo(ziﬂ)s < (g, 1)o7 (5, 7) > . (49)

Note that by continuity

kB =0 kB =0 (4.10)
and that by its definition
Eij(~&,7) = Eji(x,7). (4.11)

The dynamical equation for the spectrum tensor is formed
from (4.8), and is
KK Kikn

= I e [( ;zn = 61'!1)Emj + (_J;cé_ = 5jn)Et' ]
(4.12)

It is important to note that in RDT the spectrum equation

is a closed equation.

The turbulent stresses are given by

dE;;
dr

Ryi(r) =wv; = /Eij{_-'iaf)dsﬂ- (4.13)

The evolution equation for R;;, obtained by integrating
(4.12) over wavenumber space, is

dR;;
dTJ = 2T enm3(Mmgin + Mmijn — 6inBymy — 8inBmi)
(4.14a)
where
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Kpk 3
M’iqu(f) = f ._i_z_.‘_f. ig'(&s'r)d k. (4.14b)
Note that the R;; equations are not closed since they con-
tain the M terms, which arise from the pressure.

4.2 Permanence of the energy spectrum

It is immediately evident from (4.12) that

B L,

o (4.15)

Thus, rapid rotation (without strain) does not alter the
distribution of energy among the Fourier modes; therefore,
one should not expect a Taylor-Proudman reorganization
of the flow into two-dimensional turbulence. Since the en-
ergy spectrum is constant, the structure tensor ¥;; is also
constant (in-the rotating frame).

4.8 Initially isotropic turbulence
If at 7 = 0 the spectrum is isotropic, then

_ E(x) (

T 4wk?

Kik;
E;;(%,0) 5 —’-)

— (4.16)

and (4.12) reduces to dE;;/dt = 0. Therefore, rapid rota-
tion will not change the spectrum tensor of isotropic turbu-
lence (in the wavenumber range for which RDT is valid).
See Speziale et al. (1987).

4.4 Material indifference to rotation

If the turbulence is two-dimensional (2D) with its axis
of independence aligned with the mean rotation (here £3),
then one may define a stream function such that

_9% T
8¢, LT

vy (4.17a)

and the Coriolis terms then put in a modified pressure,

px =p— 2tpl. (4.170)

The equations of motion in the rotating frame are then in-
dependent of the rotation rate I' (in the full Navier-Stokes
equations as well as in RDT). The only effect of the mean
rotation is then to rotate the turbulence, and so under the
RDT approximation there is no change in the turbulence
field as viewed in the rotating frame. Under this very spe-
cial condition the turbulence is said to be materially indif-
ferent to rotation (Speziale 1981).

4.5 Response of 2-D turbulence to rotation

The situation is quite different if the turbulence is 2-D
with its axis of independence perpendicular to the axis of
mean rotation. Consider the situation where the turbulence
in independent of £;, for which one can define a stream
function 1 such that

a¢ ap
Vg = —— Yg = —=——, 4.18&-,6
T 5= 3¢, ( )
The RDT equations simplify to
vy 8y
e 21‘353 (4.19&)
i(___az’/’ + % ) _ordu (4.195)
07 \9&06  9E306; dts’ )
The Fourier amplitudes are then governed by
by, . dp k3,
== 2T kgt = 2tI‘Fv1. (4.20a,b)

We will develop the solutions for two cases where the initial
turbulence is isotropic in planes perpendicular to &. In
both cases the structure anisotropy tensor is

-1/3 0 ©
vu;=| 0 1/6 0 |.
o 0 1/e

The initial values of the stress anisotropies are different in
the two cases.

(4.21)

First, consider the case where the initial turbulence has
only one component (1C); ¢ is everywhere zero and the
initial vy is v1g. The solutions are

g =10 sm(zﬁrr).
K K
(4.22a,b)

The turbulent stresses are computed by integrating over all
wavenumbers (f2, £3), for example

K
3y = 919 COS(Z—:TT)

Ryi(r) = [ [ﬁmiz cos® (2’:—:]:'1') drodrg. (4.23)

Carrying out the integration in cylindrical coordinates,
oo 2x
Ry (7) = f 910/ 2xdr f cos?(2C7sin@)dd.  (4.24)
0 0
At 7 = 0 the @ integration gives 27; since Ry1(0) = qg, the

first integral is g%/(27). The second integral is expressible
in terms of Bessel functions; the result is

92
Ry(r) = ?0[1 + Jo(4T7)]. (4.25a)
Similarly,
Roa(r) = %3[1 — Jo(4T'7) + Jo(4T'7)] (4.25b)
Ras(r) = %[1 — Jo(4TT) — Jp(4T7)]. (4.25¢)

Note that Jg(0) = 1 and J3(0) = 0, and that both Bessel
functions oscillate with decreasing amplitude as time pro-
gresses. The off-diagonal stresses, initially zero, oscillate
a bit and then return to zero. We see that that rota-
tion converts this 1C-2D turbulence into 3C-2D turbulence,
and that eventually an asymptotic state is reached where
R11 = 2R3 = 2R33, corresponding to

1/6 0 0
b= 0 -—1/12 0

17 0 7S _1/12) = _ys'j/z' (4.26)

The corresponding mean-square vorticity components are

—, . Wi

wl(r) = ?0[1 — Jp(4T7)) (4.27a)
wl(r) = 5";5[1 + Jg(4T7) — Jo(4T'1))] (4.275)
wi(r) = “’Tg[l + Jo(4Tr) + J5(4T7)]. (4.27¢)

Note that the vorticity is also redistributed by the rotation
and becomes 3C.

In the second case, vy is zero initially, and the initial
vorticity is all in the wy component. The solutions are

By = ik sin(2ﬁfr) (4.28a)
K
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P =1y cos(z'm—sl"r) : (4.288)
K
The turbulent stresses are then

Ry (r) = [1 — Jo(4T'7)] (4.29q)

q2
Ry(r) = —3[1 + Jo(4T'7) — J3(4T7)) (4.290)

q2
Ry3(r) = ?0[1 + Jo(4T'7) + J(4T7)] (4.29¢)

Note that again the flow becomes 2D-3C, and that the
asymptotic state is the same as for case 1. The mean-square
vorticity components are

- _2
wi(r) = —°[1+Jo(4rr)l

(4.30a)
_2
wh(r) = —[1 Jo(4TT) + Jo(4T7)] (4.30b)
we
w3(r) = _O'II — Jo(4T'7) — Jo(4T'7)]. (4.30¢)

Note that the vorticity, which was initially all in one compo-
nent, is redistributed, with the final state (as in the previous
case) being

""'1 = Zwl = 2w wOjZ (4.31)

If the turbulence is two-dimensional with the axis of in-
dependence at an angle of ¢ with respect to the axis of
rotation, the components of motion in a frame aligned with
the axis of uniformity are as developed above, but with T
replaced by I'sin ¢.

4.6 Model spectrum for weakly anisotropic turbulence

In order to handle RDT for a more general case we need
an initial spectrum for anisotropic turbulence. We assume
that E;;(k) can be expressed in terms of the tensors 65,
k;, and b;;. For weakly anisotropic turbulence, where only
lmear terms in b are retained, the most general form with
the required symmetry is

binknk; + bipknk;

}cik
E,;j = C1§ + Cz B Csb + Cy 2
bnmknk knkmk;k;
+C'5—n'%65j + Ca%— + O(bz) (4.32)

Here the coefficients Cj, are functions of k, the magnitude
of k. For larger anisotropy, additional terms are needed
and the coefficients must be allowed to depend on all the
invariants formed from k and b.

The continuity equation requires k;E;; = 0. When ap-
plied to (4.31), one finds

Ci+Cp=0 (4.33)
C3+C4=0 (4.33b)
Cy4+C5+Cs=0. (4.33¢)

In order for the last two equations to hold for all &k, C3-Cp
must vary in the same way with k, so we can take C5 = aCj.
The resulting spectrum is

kik:
E;j(k) = C1 (55_7' - —;Tal)
binknk; + bjnknk;  bnmknkmbik
k2 + k4

ooy, et

+C3 {sz =

(4.34)

Some helpful relations are

[ K2C (k) d%k = fk : L :0 ]g : C(k)K? sin $ddodk

=4r / K2C(k)dk = I (4.350)
[c ki ’dak = —15 (4.35)
kikjk k
[ c(k)-k—“"‘cﬂk = SIA,-J-,,,,, (4.35¢)
Ajinm = bijbam + 5,'“53-,,_., +6;mbin (4.354)
kikiknkmkpkg 5 1
[ C(k) ”—ke-—d k = —=TAjjnmpq (4.35¢)
Aijnmpg = 6ijAnmpg + 6inBjmpg
+5imﬂ"jnpq +6; Agnmq + & qunmp- (4.35f)

From the definitions,

f Ok = Ry = (63 +by).  (4.36)

Integrating (4.34) and comparing with (4.36), one finds

15
. (4.37)

i
I = =¢* =
1= 3% 3= 7 2a
Note that the spectrum model still contains one undeter-
mined constant «. The structure anisotropy tensor Yij can
be calculated from the model spectrum. One finds

4 — 2

o (4.38)

Yi; =
On comparison of the M;p, resulting from this spectrum
with that resulting from RDT for distortion of isotropic

turbulence by arbitrary irrotational strain, one finds that
o = 3/2 matches RDT. A value o = 1/2, which produces
yi; =0, gives a rapid pressure-strain model that is almost
exactly that used by Launder, Reece, and Rodi (1975).

For sufficiently large b (4.36) becomes an unrealizable
spectrum in some regions of k space. T.S. Shih has worked
out the range of realizability as a function of the invariants
of b. The realizable range is very small for & = 3/2, and
appears to be largest for & = 1/2, where the structure
tensor is isotropic.

4.7 RDT for rotation of weakly isotropic turbulence

In this section we outline the RDT analysis for rotation
of weakly isotropic turbulence. Although we could solve
this problem by solving the coupled spectrum tensor equa-
tions, more insight to the physies is provided by solving for
the Fourier coefficients. Seeking solutions of the form

Da(k,7) = aq exp(if7) (4.39)
(4.8) gives
ifay — 2?% (agry — aikg) +2Tag =0 (4.40a)
ifag — 21‘%(&2&1 —ajkg) —2Ta; =0 (4.400)
K
3 K3
ifaz — 21‘?((12&1 —ajkg) =0. (4.406)

This linear equation system has non-trivial solutions only
if the determinant of the coefficient matrix vanishes. This
condition gives
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2 2 2
g2 =ar?(1- M) - >0, (4.41)
K K

Note that the solutions are undamped oscillations at fre-
quency f(x)-
The solution for kg =0 is

t1(k, 7) = 91(x,0) — C(&)k2r (4.42a)
Bg(k, 7) = Da(k,0) + C(&) k17 (4.42b)
B3 (&, 7) = 93(x,0) (4.42¢)
where
- (B Eha0) g

But for k3 = 0 the numerator of C' is zero by continuity, and
hence the Fourier coefficients of these modes do not change
under rapid rotation. Thus, these coefficients can also be
regarded as undamped oscillations at frequency 8(x).

The solution for the Fourier coefficients is therefore
=a;, 6P 4 a;_e7PT, (4.43)
a1+ and ag. are related by (4.40a) or (4.40b),

2
K
(:I: — + ) ajy = (’c—; —1)ag4. (4.44)
The coefficients a;. are set by the initial values,
810 = @iy + ai (4.45)
where 0; = 9;(%,0). Using (4.44) and (4.45),

2
{2 s - ]
a1+ = :1:12‘.c [(:Fl . + ) )Uw + (1 Ui90 (4.46)

The elements of the spectrum tensor can now be computed.
For example, one finds

2 2 2.2
K K’3 K,llcz)
—H(2+22)E
2

- (1 - K—) B 4+ 222 (1 - )(Emo + E210)

-3 "if:%>Enn~(1——”>

2
Elﬁiz - ﬂ
( nz) (E120 + E210 ] cos(27)

Ey1(k,7) =

ECEUEAE T

(4.47)
where E;jq = E;j;(%,0).

If the initial turbulence is isotropic with a spectrum given
by (4.16), then the coefficients of the sin and cos terms van-
ish and the constant coefficient becomes E11(k,0), i.e. the
spectrum is unchanged, as noted before.

If the initial spectrum is anisotropic, then at each wave-
number & the spectrum will oscillate at a frequency 28(x).
This might lead one to expect undamped oscillations in the
turbulent stresses, but as in the 2D cases treated above the
result is instead a damped oscillation of the stresses. Using
the initial spectrum (4.34), T.S. Shih carried out the inte-
grations (with the help of the symbolic manipulater MAC-
SYMA) and arrived at equations for the turbulent stresses
in terms of the initial anisotropies bi;,-’u? for example,

KS§2.5
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9
Ry(r) = 20—

T {(30720!:110 +10240)(T'7)5+

15
7—2a

([3840(5110 — bzzo) (I'T)4 - (7206220 +2160b110) (]."'r')2
+225b930 -+ 315b119] sin(4T'r) + [1920(b110 — bago) (T'r)?

— (900bg30 + 1260b110)T'r] cos(4T'r) — 122886110(I‘r)5)}

(4.48)
Note that the RDT predicts the damped oscillations ob-
served in the numerical simulation, and that the asymptotic
steady-state solution is

1 2 15
Biv= @byt~ ) :
11 4'0(110+3 TV g 10), (4.49)
Using (4.38), the asymptotic state corresponds to
bij = —vi;/2. (4.50)

The same damped oscillation and asymptotic behavior is
found for all other turbulent stress tensor components.

5. Physical interpretation of the asymptotic state

We have seen that rapid rotation does not change y but
does alter the stress anisotropy b, driving the turbulence

to a state where b;; = —y,-:,-/2. A physical explanation for
this will now be given.

Continuity requires that the Fourier coefficient ¥ be per-
pendicular to the vector k. The anisotropy in strained
flows is due in part to redistribution of energy to differ-
ent wavenumbers and in part to preferential alignment of
the ¥ vectors. Rotation causes the ¥ vector (real and
imaginary parts) to precess around the wavenumber vector
(Fig. 3) without change in magnitude (under RDT approx-
imations). In the notation of Fig. 3,

7 = ¥(—cos ecos ¢ cos § — sin acsin ) (5.1a)
99 = Vcosasing (5.1a)
i3 = ¥(— cos ccos ¢sinf + sin acos ) (5.3a)

The precession rate is uniform at any given g, which means
that there is equal probability of finding the ¥ vector at
any angle . Therefore, the averages (time or ensemble) of

sin® o and cos? o are 1/2, and so

1 1 1 1
by = [ 1012 (5 cos? dcos? 0 + 2 sin? 0] — 2) k. (5.4)
Similarly, the structure anisotropy yi; is
Y11 = -5 f |\'}|2 (s'mz $ecos?f — l)dsn. (5.5)
¢ 3/ =

That b33 = —y31/2 is evident writing (5.4) and (5.5) en-
tirely in terms of cosines. The same relationship holds for
all other components. Hence, the asymptotic relationship
by =~ _.,-/ 2 will hold for any turbulence in which the phase
of the Fourier vector is random.

Thus, the primary effect of the rotation is to randemize
the phase of the Fourier coefficients. This randomization
reduces the anisotropy of the turbulent stresses (a linear ef-
fect) in addition, it reduces the non-linear spectral transfer
and hence reduces the dissipation rate (Bardina et al. 1985).

6. A simple turbulence model for rapid rotation

We have explored a number of possibilities for modifying
the rapid pressure-strain model. One can consider allowing
M to depend both on b and y. Over 100 linearly indepen-



dent tensors could appear in such a model; the linear ver-
sion contains no unknown coefficients but does not display

the damped oscillations, and the complete model would be
very complex. Another alternative is to include the evolu-
tion equations for M, which would increase the number of
dependent variables by 36. This approach requires a model

for
kepkgk ks
Nijpgrs = j X!

Although this approach is probably not practical either,
some exploration of this idea was carried out by the au-
thor and T.S. Shih to see if it might work. We modeled
N in terms of M, retaining only linear terms. There are
sixteen linearly independent tensors that must be involved,
and after using continuity and definitional constraints there
is one undetermined coefficient remaining. We used this
in a model of RDT, attempting to match the RDT solu-
tions. The model solutions did display something resem-
bling damped oscillations at the correct frequency, but did
not level out to an asymptotic steady state.

E;;(k)d%k. (6.1)

A much simpler idea seems far more practical. A model
displaying the essential characteristics discussed above is
(in inertial coordinates)

i = (2X — 1) (b3 0%; + b5 0s)
—BX0(26;; + ;)

X = \/Zﬂﬂﬂm (ynm + 5n.m/3)

(6.1a)

(6.16)

where (12 = 0,0, and {; is the mean vorticity. The X
term assures that rotation has only a kinematic effect on
the turbulence when the turbulence is 2D with its axis of
independence aligned with the mean vorticity (material in-
difference), and tempers the effect of rotation as the sin of
the angle between these axes. The f# term produces the
proper asymptotic state. For the 2D cases treated above,
X =1 and the equations in the rotating frame are

% = —4T'byg — 28T (2b11 — 1/3) (6.2a)
djzz = +4Tbyp — 2T (2632 + 1/6) (6.2b)
d:;z = 2T (b11 — b2) — 28Tbya. (6.2¢)

The solutions are of the form
biji= ¢~ 2PT7[ A cos(4T7) + Bsin(4Tr)] — vij/2.  (6.3)

Comparison with the exact solutions for these cases sug-
gests § = 0.35. Incorporation of this model in more com-
prehensive turbulence models is now being explored.
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Fig. 1 Typical numerical simulation of the rotation of aniso-
tropic homogeneous turbulence (by N.N. Mansour).
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Fig. 2 Typical RDT solution for the rotation of initially
anisotropic homogeneous turbulence (by T.S. Shih).
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