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ABSTRACT of .t‘he strain  field, and- containing li.ke-signed
vorticity. The unsteady Navier-Stokes equations are
Numerical simulations of the Navier-Stokes equations solved numerically in stream-function vorticity
are used to study the interaction betv."een_ M eqlllal formulation on an (r,8)-plane using a hybrid spectral
vortices embedded in an axisymmetric strain field which fourth-order finite-difference method. Configurations
stretches vortex lines. Values M = 2, 3 and 4 are consisting of two, three or four vortices are
considered. As vortices merge and evolve towards an considered.

axisymmetric equilibrium state, complex patterns appear
including the creation of strained shear layers and
their subsequent destruction by viscous diffusion. The
results of the simulations are used to calculate the
form of the energy spectrum for a model of homogeneous
turbulence consisting of an ensemble of merging
strained vortices with M-fold interactions.

1. INTRODUCTION

The equilibrium vorticity distribution which results
when a uni-directional vorticity field is subject to
strain aligned with the vorticity, gives one of the
more interesting  fundamental solutions of  the
Navier-Stokes equations. In cylindrical (r,0,z)
co-ordinates with corresponding unit vectors (r,8.k),
let
w = wretk, 1)
be the uni-directional vorticity field embedded in an
imposed strain field with velocity
u = - o+ gzk (2)
Lt FLESE 3
where 7 is the constant strain rate. Then the
axisymmetric equilibrium w® distribution is (Burgers
1948, Batchelor 1967)
'y ar’
w(r) = Iy expl- v s (3)

where T = Zrtflg wrdr is the total circulation and v is
the fluid viscosity. Equation (3) gives a k balance
between viscous diffusion and strain-induced

intensification of vorticity. Inertia plays no role.

Strained vortices like (3) have been used in turbulence
modelling (eg Townsend 1951, Perry and Chong 1982,
Lundgren 1982), and have been observed in numerical
‘simulations of strained shear layers (Lin and Corcos
1984), Little is known however concerning either the
fundamental dynamical interactions occurring between
two or more strained vortices in close proximity, or
the role such interactions might play in the mechanics
of fine-scale turbulence. The aim of the present paper
is to investigate these questions.

We study numerically the evolution of initial vorticity
distributions consisting of a superposition of
vorticity fields like (3), each offset from the centre
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2. FORMULATION

All flows considered have wuni-directional vorticity
like (1). The full velocity field is written as
u(r,0,z,t) = v(r,8,t) +u (4)
= — —s
where u = ur + u@ + uk In (4) v is the vortex

induced velocity in the (r-8)-plane and u, is given by
(2). Since the fluid is incompressible, and V.(u;) = O,
a stream function ¢(r,8,t) associated with the v motion
can be defined, where

VCy=-u, (5a)
1oy 8y
Y=rat 61‘9' (50)

and w = Vxyv .The vorticity transport equation, and the
equation for ¥ are respectively

2
2] 8w 1 dw _ v | a 8w 1 87w
%At le - Tty {E-(r_ar A S }"6’
138 sy, 1 8 y°
sl g =8 @
r-ae
We wish to solve (5-7) numerically with given ¥, and
w(r,8,t=0) given, (8a)
w(irs «,8,t) > 0, t = 0. (8b)

Equation (3) together with an appropriate ¥ may be
shown to be an exact equilibrium solution to (5-7).

3. NUMERICAL SOLUTION

A combination of finite difference and spectral methods
was used. We represent w and ¥ as

D

w (r,t) eine

n

w(r,e,t) =
n

(9a)

=

N
2



N
-1

zo. )
yret) = § b (rt) e

n=-—

(sb)

where r € [O,w), 8 € [0,2n) and N is a truncation
parameter. Use of(9) in (5-7) gives evolution equations
for @, and {j,, n= -N/2,...N/2-1. Equation (7) gives N
linear ODE's in r for the ﬁ given the w,. These were
solved by a fourth-order finite difference method.
Equation (6) gives N ODE’s in t for the uw,. These were
integrated in t using a Crank-Nicolson two-point scheme
which was fully implicit in the fourth-order spatially
accurate linear terms. The V.(wu) terms were treated
first by fourth-order  differencing and  direct
multiplication on an NxN grid in the (r-6)-plane, and
then by application of the discrete Fourier transform.
Iteration on the nonlinear terms in each timestep At
was required for stability. The boundary condition (8b)

n?

was implemented by the use of a tanh coordinate
stretching transformation to map r € [0,@) onto a
finite line. Very small time steps At = 1/(N Re) were

used. Solutions discussed presently have N =128.
Further details of the numerical method including
testing are given in Buntine and Pullin (1989).

4. RESULTS AND DISCUSSION
4.1 Vortex Merging

Physical quantities are made dimensionless by setting
v =1 and ¥ = 4 in numerical simulations. This sets to
unity Y4v/y , the radius of the equilibrium vortex (3).
A Reynolds number for the flow is defined as

Re = [/(2nv), (10)

describe the
each at
conditions

where I' is the total cirulation. We
results of three vortex merging simulations,
Re = 640. In each calculation the initial
consist of a superposition, with M-fold asymmetry, of
M = 1,2 or 3 vorticity fields, each like (3), but
offset from the strain field centre by a distance d of
order the individual vortex diameter. We suppose that
these configurations model M-vortex interactions which
might be typical events in a turbulence field where the
imposed strain is provided by the average velocity
field of surrounding compact vortices. Such alignment
between a principal axis of the local strain field and

vortex lines was found in numerical simulations of
three-dimensional homogeneous turbulence by Ashurst
et al (1987). The assumed asymmetry in the initial

conditions is artificial but is adopted for simplicity.

The results of the simulations are displayed in figures
1-3 as timewise sequences of snapshots of the vorticity
field. Since T is the same in each case, it may be
expected that the asymptotic state of each simulation,
when t becomes large will be the same equilibrium
strained vortex solution given by (3).

about their
into a near

In figure 1 the vortices first rotate
mutual centre while each is deformed

elliptical shape by the local (r,8)-plane strain field
induced by its neighbour. Differential  rotation
produces spiral shear layers which roll-up. This is

followed by the action of viscosity in smoothing the
radial oscillations in the vorticity field to produce a
nearly axisymmetric core, and finally, the strain field
drives the vortex towards the asymptotic form (3).
Simulations with initial core separation distance much
larger than the vortex core diameter showed that the
final phase of merging was influenced little by initial
separation. The merging pattern of figure 2 may then be
considered typical for a two-vortex merging event at
moderate to high Re.

The three and four-vortex merging events of figures 2-3
show complex w-distributions comprising multiple
rotating shear layers. The last frames of figures 1, 2,
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and 3 clearly show unequal contour density for the
three cases, at times when the merged vortex first
becomes nearly axisymmetric. This indicates that for
the M = 3 and M = 4 flows, the strain field requires
more time to intensify the w-field towards (3). This
occurs on ‘a time scale of order y , but takes lon_ger‘
with increasing M since, from (3), at t = 0, |@pax| =
T'y/(4nvM). By contrast th axisymmetrization time is
order d°/T for all M.

4.2 Turbulence Energy Spectrum

We consider a model of homogeneous turbulence
comprising an ensemble of merging strained vortices. It
may be imagined that the vorticity field consists of
curved vortex rods with random orientation in three-
dimensional space. In cross section each rod shows the
structure of an M-fold strained vortex interaction at
some time during its evolution. Such interactions may
of course involve antiparallel vorticity leading to
cancellation, but these events may be shown to make
only a small contribution to an overall energy
spectrum. Indeed the processes of merging and
cancellation may be thought of as in balance at a
particular Re, giving a stationary distribution. This
model is essentially that considered by Townsend
(1951), who used (3) as the fundamental solution, and
Lundgren (1982) who considered a strained Kaden-spiral
model. By replacing an ensemble average by a time
average, it may be shown that for a quite general
w-distribution in the rod cross-section, the energy
spectrum can be expressed as (Lundgren,1982, Buntine &
Pullin 1989)

Bkl = —%  BiE (11)
2kv M
to 2 e
PK) = f sm[ 2kt + 2 T 15001 ]dt. 12)
0 9 n=1 i
0o
1(kt) = I 1 (kr) © (r,t) T dr (13)
n on n
t t
S(t) = exp [ I y(u) du ] =e” 5 (14)
0
and
(15)

t (] 2 o 2
M:J“s[t]J.[wo +zz|w|]rdrdt.
o 0 n=1 "

In (11-15), k is the wavenumber, E the energy per unit
mass per unit wavenumber, € is the dissipation rate per
unit mass and J, is a Bessel function of the first kind
of order n. Also t. is a cutoff time for the merging
which may be interpreted as the time required for
axisymmetzrization of the w-distribution. We take
t, = 0o( d"/T).

To estimate £, we identify y with the root mean square
strain rate. Dimensional arguments and the choice of an
0(1) constant ( Townsend 1951 )} then gives

4 =4, (16)
Putting K = k/k,; where
S T4
kd = l/m = [—3] (17)
€

is a wavenumber characteristic of the dissipation range
and 7 is the Kolmogorov microscale, and using (16), the
energy spectrum may be expressed in standard form
(Hinze 1975) as

E(K)

5|1/4
[E v]

_ 8 P(K) (18)

M K




In (18) P is given by (I12), now nondimensionalized by
the time and length scales given in section 2.

The energy spectrum in the form of (18) was obtained by
calculating P(K) ‘and M from (12-15), wusing the
vorticity evolution data. The results are displayed in
figures 4-6, for simulations with M = 2, 3 and 4
respectively. The two-vortex pairing result is compared
with a similar calculation done at Re = 1280. The
dissipation range (K > 1) shows good agreement with the
Heisenberg K™ 'law (see Hinze 1975 ) with M = 2 but less
good agreement with M = 3 and M =4 dissipation
appears to be occurring in the rolled-up shear layers
comprising the merged vortex core. There is no -5/3
range apparent although with M = 2 there is a flattened
portion of the spectrum between the K~ region at small
K and the dissipation range.

5. CONCLUSION

The present model assumes that all merging events of
the ensemble contributing to the spectrum evolve in an

order to construct a convincing vortex-based model of

inertial range turbulence, it may be neccessary to
include information on the distribution of vortex and
strain-rate scales taken up by the fluid, in a

dynamically self consistent way.
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Figure 3. Vorticity contours
| for four-vortex (M = 4) merging
| in  an  axisymmetric strain
] field. For key see figure 2.
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Figure 4. Energy spectra for two-vortex merging,
M = 2, Re = 640, 1280
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