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ABSTRACT

The Generalized Lagrangian-mean equations are used to
derive evolution equations for the perturbation flow about a
turbulent mean base flow which is homogeneous in the
streamwise and spanwise directions. They are used to
deduce the mechanism which leads to the formation of
streamwise vortices in the wall region of turbulent bounded
flows.

INTRODUCTION

The presence of streamwise or almost streamwise vortices in
both bounded an unbounded turbulent shear flows is well
documented, but questions remain about the origin of these
vortices. Benny & Lin (1962) first proposed that those in
the wall region of a turbulent boundary layer form owing to
the non-linear interaction of a two- and a three-dimensional
wave, but this mechanism was strongly criticized by Stuart
(1967). Coles (1979) proposed, and latter retracted, a
Taylor Gortler type instability. And recently Jang et al
(1986) have employed direct resonance as a possible
explanation for their appearance.

A major difficulty in isolating the mechanism which gives
rise to these vortices is in formulating the problem: ideally
we should like to be in the reference frame of the mean flow;

we can then consider the vortices as a secondary flow about”

the mean and deduce their evolution with time. But if we
attempt this using the Navier Stokes equation, difficulties
arise in correctly accounting for how oscillatory disturbances
affect the mean field and vice versa. Similar problems have
plagued the analysis of some water-wave mean-flow
interactions and this lead Andrews and McIntyre (1978) to
derive what have come to be known as the Generalized
Lagrangian Mean equations. These equations are an exact
and very general Lagrangian-mean description of the back
effect of oscillatory disturbance upon the mean state.

In the present work we employ these equations to study the
aetiology of streamwise vortices in turbulent channel flow
and show that three ingredients are necessary for their
formation: Streamwise shear of sufficient magnitude; an
oscillatory flow field; and a weak spanwise distortion of the
mean field. The mechanism by which they form is similar to
the Craik-Leibovich mechanism by which Langmuir cells
form; that is, background, initially randomly oriented
vorticity, is oriented by the fluctuating field and amplified in
the streamwise direction by the imposed shear.

These vortices cause a local inflexion point in the streamwise
velocity profile, but the instability induced by it is initially
weak. As the shear acts to intensify the vortices, however,
so does the strength of the instability, culminating in an
exponential amplification in vortex strength and a violent
upthrust of fluid from the wall. This last event has been
widely observed and is known as ejection. Throughout the
process the vortices rise slowly from the wall.
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THE GENERALIZED LAGRANGIAN MEAN
EQUATIONS

The Generalized Lagrangian-mean (GLM) equations of
Andrews & Mclntyre (1978) are an exact and very general
Lagrangian-mean description of the back effect of oscillatory
disturbances upon the mean state. The Lagrangian-mean
velocity so described, however, is not the ‘mean following a
single fluid particle’; it is the velocity field describing
trajectories about which the fluctuating particle motions have
zero mean, when any averaging process, be it temporal,
spatial, ensemble or other, is applied. The most appropriate
choice of average is determined by the problem; for example
a time average would be used for time periodic flows. To
express ideas like a 'steady mean flow', an Eulerian
description of the Lagrangian-mean, with position x and
time t as independent variables, is desirable. Hence the
GLM description is really a hybrid Eulerian-Lagrangian-
description of wave mean-flow interactions.

To define an exact Lagrangian-mean operator { )&, ()L,

corresponding to any given Eulerian-mean operator { ), (" )
, we must define with equal generality an exact, disturbance-

associated particle displacement field &(x, t). For any scalar
or tensor field, ¢ say, of any rank, it is then possible to write

dEL = (05x, )
where

9By = o(x+E 1)
Now provided the mapping

X2 x+& (1)
is invertible, there is, for any given u(x, t), a unique 'related
velocity field' v(x, t), such that when the point x moves
with velocity v the point x + & moves with the actual flnid

velocity ué. Then with the requirements (£(x, t)) = 0 and

{v(x, 1)) = v(x, 1) it is evident that v = ul, the Lagrangian-
mean velocity. Andrews and Mclntyre derive the exact
equations for GLM motion from the compressible Navier
Stokes equations. The GLM momentum and continuity
equations are, for homentropic flows of constant density in a
non-rotating reference frame:

DL @ - pp) + (wdli @ - pi) + I = - X - (&j,ixé) @

G |
ni=? + @ -E(ujéu?) ©)
DLf + pVeul=0 “

Observe that the non-linear forcing of the mean flow is
expressed in terms of a vector wave property p, whose ith
component is

Pi=— (éj,iu; )



The vector p = p; (x, t) is the pseudomomentum per unit

mass and should not be confused with the pressure w. X =
X(x, t) is a funcdon which allows for any further

contributions, such as diffusive or dissipative forces and @
is the force potential per unit mass.

The density p(x, t) of the GLM flow ul(x, t) is a mean
quantity and is defined to satisfy ( 4); furthermore it is

connected to the actual fluid density pS by
P =p57 ; T=det {8;+E&ij)
where J is the Jacobian of the mapping x — x + &.

The Eulerian and Lagrangian-mean velocities are related to
the Stokes drift d, as

(&)

uk=u+d
where, for small disturbances & from the mean trajectories,
measured by the parameter € and an O(1) mean state,

di= (iju;,j) + %- i€k i3k + O(e3).

Note that d = O(e2).

THE GLM AND O(1) TURBULENT SHEAR FLOWS

We should like to apply the GLM equations to O(1) turbulent
shear flows in which all mean quantities save the mean
pressure are independent of the streamwise x and, to leading
order, spanwise y directions. Our intent is to study
instability mechanisms, if any, which operate with waves
that are independent of y. We thus assume the field
comprises a primary unidirectional fully developed turbulent
shear flow [U(z), 0,0] with small O(8) spanwise periodic
perturbations with Eulerian velocity components (u, v, w),
and small O(g) wavelike disturbances along with associated
terms of higher order in €. Space coordinates corresponding
to (u, v, w) are (xy, X, X3) = (x, y, z) with unit vectors i,
J- k). Then

u(y, z, t) = [U(z), 0, 0] + [u, v, w]

Crucial to the GLM formulation is the invertibility of (1) and
that requires a non-zero Jacobian (5). As a practical matter,
the use of Andrews & Meclntyre's formulation as a
computational tool in turbulent flows is limited by
indeterminancy arising from the failure of this condition
within a time scale comparable to the inverse of the largest
Liapunov exponent in the flow. For the flows we wish to
study, however, this condition is obviated (Phillips 1989).

The Lagrangian mean flow is divergence free for the above

flows (Phillips 1989), but the dependent variable T = p;

suggested by (2), is not solenoidal; we thus introduce
Q=ul-p+psk

such that VeQ = Veul = 0. Then since dy = 0 at O(g), we
may introduce the Lagrangian-mean stream function wk, as

L, L
v+d2=a;j—, w+d3,=—aal
Z ¥

After a tedious analysis the Stokes drift and
pseudomomentum become (Phillips 1989)
t t
pi= - AjkRgjidt - [ U13iR3p dt
0 0
L
= U3 {[ 1) [R3 +R3y il dt
o]

t
= (1) [R31i + R3] dt)
Q
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and

t t
d; = IAijkij dt + %Uj,33 | (t—t) Rzz dt.
4] 0
where
' Ak =8k +(t-s) Ujx and r=(s- to)U1i.
with
R = {u(xo+r(s), S)UJL (xo+r(1), 1))
= Rkj (U, 0,0,7;:2)
and
Rii = (y; (o +1(5), 9) uxo + £, 1)
= (5 0,0,0,0:2) 4 (Uz, 0,0, 2)
THE EVOLUTION EQUATIONS

In considering fully developed turbulent channel flow two
obvious velocity scales enter the problem, the centreline
velocity Uy and the friction velocity Uz, and two obvious
length scales, the channel half width h and the viscous length
scale v/Uz. Together these could be used to write the
equations in non-dimensional form. But Streaks are a wall
layer phenomenon and appear to scale with the wall region,
so an appropriate length scale is one representative of that
region. We thus introduce the length scale, P say, which is
characteristic of the wall region where, in wall units
(Phillips, 1988)

P* =PUy/v = F['clm (e2Uzy/v) — U/Uq] d(Ury/v) = 68.7
0

where k(= 0.41) is von Karman's constant.

We may then interpret the characteristic wavelength of any
oscillatory field that operates in the wall region as 1/P, with
the frequency scale Ug/P; the amplitude of such waves,

however, will be given by v/Ug.

On setting U= U:U, where tilda means a dimensional
quantity, we find
u+d-p
=Uz [U+u] i+ Uy/P™2 [d; —pli
+ (UoV/P)/2 [(v +dy—py) j + (W +d3 —p3) k]
X=Plyj+zk], ?:-IEL (m)lﬂ:
of v

o (B 0 (8%

The Langmuir number La (Leibovich, 1977) is the only non-
dimensional parameter to appear with this scaling, where

La=@UN) 2= (cyyit

Observe that because the skin friction coefficient Cy varies
only logarithmically with momentum thickness Reynolds
number Rg (Phillips 1988), La is close to constant over the
experimental range. In particular at Rg = 500, La = 0.0269
while at Rg = 104, La = 0.0231.

In dimensionless form, the evolution equations

become

{=-V2yL | 6)
{i— LaV2u = J(yL, u)
dt
dy d e s

+§;a_z‘{U+(P La)~2 (dy-pp} )
and
2 91 du
2 LAVAE = L s 22
{ar LaVAL =J(y-, ) % 3y ()

Note that over the experimental range of Reynolds numbers
P*La = O(1).



Non-decaying solutions to (7) and (8) are admissible only
with, but are not guaranteed by, non-zero coupling terms.
For non-zero coupling terms a fluctuating field, whose
rectified effect manifests as the pseudo-momentum, must
occur simultaneously with a weak spanwise distortion of the
mean flow. A third ingredient, not necessary for coupling
but important for instability, is the presence of shear in the
mean flow: attest the fact that Streaks occur only in the wall
region of a turbulent boundary layer, where the shear is
highest. Shear is also necessary for the Craik-Leibovich
mechanism to operate. Note that (7) and (8) recover the
governing equations for Langmuir circulation in which, for

O(&2) mean flows, p; = d; (Leibovich 1977).

For boundary conditions we shall assume no slip at the wall,
that all Eulerian velocities are symmetric on the channel
centre line and that the flow is spanwise periodic, then

u={=y=00nz=0;
du/dz = =y=0o0nz=h/P; and
u(0, ) = u(L, 2), §(0, 2) = §(L, 2), W(0, z) = y(L, z).

The period L (= I/P = L*/P*), however, is unknown and
may be determined in from a linear stability analysis by
identifying L as the most unstable lateral mode.

STABILITY ANALYSIS

Spanwise periodic perturbations must, on assuming normal
modes, take the form

[u, ¥] = 8Re {eStelly [B(z), - &fil W(2)])
We note that the perturbation velocity components in the y-
and z-directions are weaker than the downstream component

by a factor g; this is perhaps why cross-stream velocity
components do not register in conditionally averaged hot-
wire measurements! The resulting equations are then

[D2-2-q] B=(P"La~l) WdU/dz ©

[D2-72-3] [D2- 2] W =- (P*La)! 2 {B dTy/dz -
T1dU/dz) , (10)

where / is the spanwise wavenumber and §(/) is the growth

or decay rate to be found.

Equations (9) and (10) must satisfy the boundary conditions
B=D2W=W=0o0nz=0,dB/dz=

D2W =W =0on z=h/P. (11)

The right-hand side of (10) depends upon the distortion of

the wave field through T}, but, as Craik (1982) points out,

the GLM equations provide no direct means of evaluating T,
and a separate examination of the wave field is necessary.

For our present purposes, however, we shall set"f’l =0.

The eigenvalue problem defined by (9), (10) and (11) bears
similarity to a number of classical stability problems (see
Drazin & Reid 1981), in particular Taylor-Gortler, but it is
not Taylor-Gortler.

RESULTS AND DISCUSSION

Calculations were done at the Reynolds number of Kreplin
& Eckelmann's (1979) experiments, viz 385 (based on
channel half width). The Stokes drift and pseudomomentum
were evaluated using an empirical expression for the space-
time correlations based upon one given by Favre (1965); the
mean velocity and turbulence intensity profiles were those of
Phillips (1987) and Phillips & Ratnanather (1989). With
this input the linear stability analysis yielded a value of L =
120 wall units for the most unstable spanwise mode. Since
the linear analysis is the initial value problem to the fully
non-linear problem, the solution to it was used as input to
the non-linear case. The numerical details are given in
Phillips (1989).

The instantaneous cross-sectional streamlines of the vortices
do not change greatly with time, sce figure 2, but their
strength increases. Initially the: increase is gradual and
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Figure 1. Evolution of streamwise velocity profile on
symmetry axis between two vortices.

would appear to be due to enhancement by the mechanism
generating the vortices, rather than the instability arising
from the inflexion point they induce in the streamwise
velocity profile. But eventually that instability dominates
and the vortices undergo an exponential growth. During this
period the streamwise velocity perturbation grows to O(1),
see figure 1, and is coupled with an explosive upthrust of
fluid from the wall. The latter phenomenon is observed
experimentally and is termed Ejection. Profiles of constant
velocity one wall unit above the wall are given in figure 3.
These are initially symmetrical but do not remain so;
eventually stagnant regions of spanwise spacing L, form. It
is evident that any dye injected close to the wall would
accumulate in these regions, appearing to an observer above
as Streaks. Moreover, some of the dye would slowly rotate
with the vortices - remember that their rotational velocities
are two orders of magnitude lower than the streamwise
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Figure 2. Instantaneous cross-stream strealines at = 90.



velocity perturbation. These helices, viewed from above,
appear as oscillations, or what Kline et al (1967) termed
Breakdown. Throughout the entire process the vortices rise
gradually from the wall. It appears that their height
following Ejection is such that the dynamic instability no
longer dominates. Whether this is because they are now in a
region of lower shear or for other reasons is unclear.
Following Ejection, new vortices form and the process

Tepeats.
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Figure 3. Evolution of contours of constant velocity in a
plane one wall unit above the boundary.




