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1 INTRODUCTION

Recent developments in the theory of dynamical
systems exhibiting chaotic behaviour (summarised e.g. by
Guckenheimer et al 1983, Wiggins 1988) have raised the
question whether turbulence in fluid flows could be under-
stood as dynamical chaos. Several proposals on possible routes
to chaos have been made, and these have found some support
from observations in bounded flows such as convection in a
box (Gollub et al 1980). However, the existence of any con-
nection between the dynamical chaos exhibited by such sys-
tems and turbulence in open flows like boundary layers and
wakes has frequently been questioned. It is generally felt that
the chaotic phenomena observed in low-dimensional non-
linear systems may be relevant only to ‘weak’ turbulence, i.e.
to stages preceding onset of fully turbulent behaviour (Hao
1984, Morkovin et al 1987).

The questions mentioned above crystallise into three
basic issues (Narasimha 1987).

(i) Chaotic dynamical systems do not appear to exhibit
a strong cascade process of the kind generally considered an
essential feature of turbulence (Batchelor 1953). Figure 1
compares the spectrum of the Lorenz system (Lorenz 1963)
with that of a typical turbulent flow, showing how the energy
in the former falls off steeply with increasing frequency, and
suggesting that the chaos of such low-dimensional systems is
basically ‘slow’ (as one may expect from the commonly
encountered period-doubling route to chaos).

(ii) In open flows, especially boundary layers and
ducts, the critical value of the control parameter (e.g.Reynolds
number) at onset of turbulence is not unique, but depends
strongly on the disturbance environment. Indeed, an analysis
of experimental data on boundary layers that allows for the
presence of residual non-turbulent disturbances in the facilities
used for testing strongly suggests that the critical Reynolds
number is inversely proportional to the disturbance intensity
(Govindarajan et al 1989; see Figure 2).

(iii) Flow turbulence persists for values of the control
parameter beyond the critical, but low-dimensional dynamical
systems exhibit order and chaos in alternating windows; in the
Lorenz system the solution at sufficiently high values of the
Rayleigh number is just a limit cycle (Sparrow 1982).

The question that arises is whether these criticisms
apply only to dynamical systems considered to date. In the
present lecture I shall describe a model (Narasimha et al 1988)
whose behaviour appears to answer the above criticisms and
mimic certain generic features of open-flow turbulence. The
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model is only ‘‘impressionistic’’ (in the sense used by Nara-
simha 1989), and is intended to offer insight rather than
quantitative predictions for any particular flow. Detailed
numerical and analytical studies of the model are available in
Bhat et al (1989) and Bhat et al (1989), which will be referred
to as I and II below.
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Figure I: Comparison of a typical spectrum of the solution of the Lorenz
model with that of the streamwise fluctuating velocily component in a
turbulent jet (Corrsin & Uberoi 1950), normalised to agree at the lowest
frequencies. The flat spectrum of the Lorenz model beyond a frequency
of about 10 is a numerical artifact.
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Figure 2: Dependence of transition Reynolds number R in a boundary
layer on free-stream turbulence g; at low values of g transition is driven
by facility-specific non-turbulent disturbances, parameterised by the
variable q,. The full lines show a correlation with (q* + g?) proposed by
Govindarajan & Narasimha (1989).
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A different kind of attempt to link relatively low-
dimensional chaotic dynamics and an open flow system has
been made recently by Aubry et al (1988). They model the
behaviour of streamwise vortex rolls near the wall in a
boundary layer and show that it is possible to capture the
ejections and bursting events observed experimentally. Their
study, utilising modes derived from observation, confines
itself by design to a specific flow, and in particular is not
concerned with transition. The present model, on the other
hand, is intended to look at open flows in general, including
transition mechanisms.

Some very interesting experimental work has been
reported on wakes (Sreenivasan 1985, Van Atta et al 1987,
Olinger et al 1988); the central issue here appears to be the
necessity or otherwise for the presence of forcing of some kind
to induce chaos.

2 THE MODEL

The basic philosophy in constructing the present model
is to incorporate in it those physical factors that appear
essential to turbulent behaviour, at the same time retaining
simplicity to enable detailed analysis. The conventional
method of using a truncated Galerkin approximation to get a
set of ordinary differential equations from the governing
partial differential equations will in general need a large
number of modes, and hence also equations, even to attempt
meeting the criticisms listed in Section 1. This difficulty is
avoided here by treating turbulent flow as mainly the outcome
of interaction between motions at two widely different scales,
somewhat in the spirit of Liepmann’s (1961) turbular fluid.
More specifically the spectral or wave number space is
considered to consist of two broad regions, one where non-
linearity and external disturbances play the major role
(representing the so-called large eddy motion) and the other
where viscous dissipation is dominant, representing the small
or Kolmogorov scale motion (see Figure 3). These two scales
are coupled by a non-linear energy transfer mechanism, often
called the Richardson cascade process, schematically
illustrated in Figure 4.
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Figure 3: A skeich of the spectrum of energy and dissipation in turbulent
flow, indicating their relation to the variables of the present model.
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Figure 4: Schematic diagram to illustrate the cascade process in turbulent
flow.

The model has two dependent variables U, u, both
considered functions only of time t, and a specified external
forcing q(t). U and u may be thought of as representing the
amplitudes characteristic of large and small eddies respec-
tively, the actual velocity being a combination like:

a U(t) exp i(K,.x - @) + b u(t) exp [i(K,.x - w,t+ ¢)]
(1)

where K|, ,, and K, ®, are characteristic large and small
eddy wave numbers and frequencies and a and b are weighting
functions that are a measure of the intensity of as well as the
bandwidth covered by the respective motions in wave-number
space. For the sake of simplicity we shall assume that the
eddies have a common celerity @,/[K| = @,/|K,|, and that time
is measured in a coordinate frame moving with the fluid at this
speed, invoking a form of Taylor’s hypothesis. Note the
significant departure from earlier studies, typified by the
Lorenz system, where only the lowest few modes are selected
for describing the dynamics. If u(t) is seen as representing
Kolmogorov-scale motions, we should expect the weighting
factor b to be a function of the Reynolds number
characterising the large-eddy motion (Batchelor 1953). An
alternative interpretation that is helpful in motivating the
model is inspired by experimental observations in boundary
layer transition (see e.g. the recent reviews by Stuart 1986 and
Herbert 1988), where it is found that as the amplitude of
oscillation in the primary Tollmien-Schlichting instability
increases, an intense small-scale high-shear layer develops;
this secondary instability rapidly leads to the growth of fine
scale motion.

The importance of including a forcing term q(t) is
evident not only from classical work (Schubauer et al 1948) on
boundary layers, in particular as analysed by Govindarajan et
al (1989), but also from the recent work of Gaster (unpub-
lished). It is our premise here that in boundary layers certainly,
and possibly in all open flows, there is no transition if there is
no forcing (ignoring microscopic triggering such as that due to
Brownian fluctuations). (As an aside, therefore, one way of
keeping a flow laminar would be to provide it with a quiet
environmental sheath, itself maintained possibly by active
control operating on the receptive frequency bands.)

The following physical considerations were used to
suggest possible forms for the model:

(i) The large scale variable U must be governed by a
control parameter that plays the role of Reynolds number
(denoted by R say), whose variation changes overall system
behaviour.
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(ii) There must be a critical value R_of this parameter
such that for R <R_the motion is stable, and for R > R the
system exhibits linear instability.

(iii) For R > R the growth of U because of linear
instability will eventually be checked by non-linearity and
saturate at some finite maximum that depends on R.

(iv) The value of R at which onset of chaos will occur,
say R, will in general be higher than R_and depend on the
forcing q(t) (which may be deterministic).

(v) The small-scale motion u will gain energy from the
large-scale motion U by non-linear interaction.

(vi) Energy at the small scales is lost due to direct
viscous action.

Several non-linear models may be written down that
are generally consistent with the features listed above. We
shall discuss here the model called System 2 in Narasimha et
al (1988), as it was found to be the simplest that has many
desirable and interesting properties. The model is described
by the equations:

dU/dt =U(1 -v - U%) - K u Ju] + q() (2a)
dufdt =k U(ju| + &) - Du, (2b)

with the forcing taken in general to be the sum of periodic
and stochastic components:

q(t) =q cos wt +q_ E(L). (2c)

It is necessary to discuss briefly the different terms in
equations (2). First of all, the linear and cubic terms in U in
(2a) are prompted by the non-linear stability theory of Stuart
(1960) and Watson (1960) for plane Poiseuille flow. The
parameter L represents the effect of viscosity on the large-
scale motion. With an expression like (1) for the velocity, the
viscous term in the Navier-Stokes equations will be propor-
tional to the actual viscosity of the fluid times K,* and K% the
vand D of (2) are to be thought of as these products The limit

v --> 0 is like the Reynolds number tending to infinity in a
flow, and (2a) reflects the fact that at high Reynolds numbers
non-linear interaction dominates over viscous effects on the
large scalés (cf, the principle of high Reynolds number
similarity (Townsend 1976), according to which the viscosity
is asymptotically irrelevant in large-eddy motion as the flow
Reynolds number tends to infinity). Clearly v plays the role of
control parameter here and may be thought of as proportional
to the inverse of a Reynolds number based on large-eddy
scales. The coefficients K and k govern the non-linear
interaction between large and small eddy motion, and
represent the net effect of the cascade which actually takes
place through intermediate scales. The small eddy variable u
grows because of interaction with U and is assumed to act
roughly like a Reynolds stress on U as given by the second
term in (2a). The parameter G, assumed small, is added to
ensure that u is always excited in the presence of U. We have
found that it plays no great role in the model, but in its absence
u =0 is always a solution. In practice, numerical noise ensures
that u does not remain zero even if =0, but we have
preferred to put in explicitly an ‘agitation’ from the large
eddies instead of leaving it to numerical ‘stirring’. At the
small scales, viscous dissipation is represented by the term
containing u, which is assumed to be always significant; so v
does not vanish with v (K, adjusting itself suitably in the
limit), and this is a crucial feature of the present approach.

The forcing (2c¢) permits us to mimic experimental
studies undertaken to elucidate the mechanisms underlying
transition, where free-stream turbulence and other stochastic
disturbances have often been greatly reduced and artificial
periodic forcing introduced (e.g. Schubauer et al 1948,
Nishioka et al 1975, Gaster 1984).

The use of the absolute value sign in (2) introduces a
symmetry in the (U,u) phase plane and actually results in a
simpler system (the transformation U --> -U, u --> -u leaves
equations (2a,b) invariant). The chief physical implication is
that in spite of the cascade process, energy transfer between
large and small eddies is not always in the same direction - a
fact that is well recognised (Batchelor 1953).

Itis seen that, apart from the forcing, there are five
unspecified parameters in the model. Out of these G is
assumed small and has been assigned a value of 0.05 in all
the investigations reported here. The choice of values for the
other parameters is guided by the solutions of the unforced
system, which we now briefly describe.

3 THE STRUCTURE OF THE SYSTEM

It can be shown (I) that the unforced system has, apart
from the origin, two other fixed points located symmetrically
in the phase planc Their position depends chiefly on v and
the ratio & = V/k, which represents in some sense the ratio of
viscous dissipation to non-linear energy transfer. As there is a
balance between the two in turbulent flow, the viscous scales
adjusting themselves to dissipate the energy that cascades
down from the large eddies, we shall require & to be 0(1).

The behaviour of the system does not depend strongly
on o, K or k, but does depend critically on v and 2. To
illustrate the nature of the attractors in the system, we show
this dependence in Figure 5a, for 6 =0.06, K =k-3.3. Itis
seen that at v = 1 there is a pitchfork bifurcation, giving rise
to two additional fixed points for v < 1. They are situated
respectively in the first and third quadrants of the phase plane,
their precise location depending mainly on v and &; as an
example, their variation with v for 8 = 0.55633 is shown in
Figure 5b. It is seen that as v --> 0 the position of the large-
eddy fixed point U, is insensitive to v which is consistent with
the principle of high Reynolds number similarity already cited.

A homoclinic orbit plays a special role in dynamical
systems because it can break even under very small
perturbations giving rise to chaos. Since it should take little
external forcing to trigger turbulence at high Reynolds
numbers, we should want the present model to become very
sensitive to external forcing as ¢ --> 0. The value assigned
for 8 (and V) above is precisely that required to ensure this,
i.e. to give a homoclinic orbit at v=0.

The fixed points of the unforced system may be
thought of as representing states of motion preferred in some
way; the presence of two fixed points apart from the origin
indicates the existence of two such preferred states atv < 1.
There are many flows that exhibit such behaviour, For
example, the wake behind a body (especially one that is blunt)
contains vortices of opposite sign in a Karman vortex street
when the Reynolds number is not too low; such vortices are
known to persist in some form at very high Reynolds numbers
as well (Roshko 1961, Cantwell et al 1983). Each fixed point
may therefore be seen as the analogue of a vortex of one sign.
As a second example, we may cite the (turbulent) boundary
layer in which the flow may largely be described as the
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Figure Sa: Dependence of the fixed points U, and u, on v for K = 2.3 and
8 =0.55633. There are three fixed points for v<1; the non-zero fixed
points 2 and 3 are at the same distance from the origin, but located in
opposite quadrants.
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Figure 5b: Bifurcations and attractors in the unforced system at K=k=2.3.

succession of two basic patterns of motion called respectively
“‘sweeps’’ and ‘‘ejections’’ (Kline et al 1967, Corino et al
1969). It is therefore useful to think of the two non-zero fixed
points in the present dynamical system as indicating the
possibility of two characteristic patterns of motion that
constitute (latent) coherent structures.

4 RESPONSE TO PERIODIC FORCING

With forcing, even when it is purely sinusoidal (q, =0
in (2c)), it can be shown that the deterministic system (2) does
indeed possess chaotic solutions under certain conditions (I).

Here by chaos we shall mean the irregular behaviour of
the system as a result of repeated stretching and folding of
volumes in phase space (Wiggins 1988), with the associated
property of sensitive dependence on initial conditions.
Inferences about the existence of chaos may be made from
numerical studies of Poincare maps. These are obtained by
sampling the solution at time intervals equal to the period of
forcing; i.e. successive points are iterates or images of their
predecessors one period earlier. In spirit this procedure bears
some resemblance to the technique of conditional sampling
used in the search for persistent “‘coherent’ structures in
turbulent flows.
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Figure 6: Dependence of the Lyapunov characteristic exponent on ® and gq
atv = 0. Even at g = 10%, the exponents are positive at some frequencies.

Indeed, using a technique due to Melnikov (1963), it
can be dcmonsu;?tcd analytically (T) that for appropriate
values of k and v (including those chosen here), the system
possesses homoclinic tangles, and hence exhibits chaos, for
all sufficiently small values of ' under forcing: a property
that is very important in the light of the criticisms of Section 1.

From a fluid-dynamical viewpoint, the important
problem is to identify the range of v and q where the system
possesses chaotic solutions. For this purpose, the most
convenient parameter to study is the Lyapunov Characteristic
Exponent (LCE), which is defined as

A =lim In( d()/d(0))
t-->c0
d(0)-->0

where d(t) denotes the separation between two orbits at time t.
In general, a system with n degrees of freedom has n
characteristic exponents, and whenever at least one of them

is positive the system goes chaotic.

In the present model the L.CE depends on v, g and ®; as
an example, Figure 6 shows the values as a function of @ for
three values of q at v = 0. In this figure, o is varied in steps of
0.1 over the range of 0.6-4.0 and successive points are joined
by a straight line. It is seen that for a given g, the LCE is
positive in certain frequency bands, i.e. the model is more
“‘receptive’” at certain frequencies (using the word in the sense
of Morkovin 1969). Further it is seen that even for q = 106
there are frequency bands where the LCE is positive,
suggesting that the system is chaotic even at the smallest
forcing (as v --> 0), although there can be no chaos when the
forcing vanishes. Similar features are observed at higher
values of v also, but as v increases the ‘‘receptive’’ ranges of
® narrow down, and a higher forcing amplitude is required to
induce chaos. The latter point is brought out in Figure 7
where the boundary separating LCE > 0.01 from smaller and
negative values is shown (due to the difficulty of accurately
estimating the LCE, we have adopted the operational
definition that the system is chaotic whenever LCE exceeds
0.01). It is seen that the boundary in Figure 7 turns back on
itself, the region between the upper and lower curves covering
the chaotic regime for the system. The lower curve depicts the

KS6.4



iv)

§ 0.75

LCE > 0.01

rooLiil
0 il o, e o oS AL F
0 0.25 0.5 0.75 1
v

Figure 7: Boundary separating chaotic from non-chaotic regimes in the
model with periodic forcing. Note that for v>1 the system is stable, and
that for ©v>0.76 chaotic behaviour is not possible. Across the lower bound-
ary there is transition to chaos as q increases at fixed v, or as v decreases
at fixed q. Across the upper boundary, high forcing induces periodic
behaviour, as in relaminarisation by domination.

minimum forcing required to induce chaos, and may be
thought of as mimicing the known dependence of transition
Reynolds number R, on the external disturbance level (Figure
2). Above the upper curve the system exhibits forced periodic
oscillations, much as the wake behind the cylinder does if the
cylinder is itself oscillating with large amplitudes (Williamson
et al 1988); the system in this case may be regarded as
exhibiting relaminarisation by the mechanism identified as
**domination’’ by Narasimha et al (1979). It is interesting to
note that, as v increases, the lower and upper curves approach
each other and there is a value of (=0.76) above which no
chaos is possible according to the present criterion; this
number may be thought of as corresponding to the lowest
possible transitional Reynolds number R, in a flow under
sinusoidal forcing.

A detailed study of the routes to chaos in the model
reveals that there are mainly two types of transition scenario
(II). The first is seen when the system is forced near its natural
frequency; the periodic cycle, when it becomes unstable,
undergoes a cascade of periodic-doubling bifurcations,
following closely a Feigenbaum (1978) scenario. The second,
observed when the natural and forcing frequencies are widely
separated, leads to the onset of chaos directly from a fre-
quency-locked state (usually known as the quasi-periodicity
route) and resembles the transition seen in a circle map
(Arnold 1965, Thompson et al 1987).

5 RESPONSE WITH A STOCHASTIC
COMPONENT IN THE FORCING

In practice, some noise is always present in any
experiment, especially in fluid flows, so there is practical
interest in understanding how the system behaviour is modi-
fied when a stochastic element is present in the forcing. We
assume that the forcing is a combination of a periodic and a
stochastic term, as in controlled experiments subjecting the
flow to a periodic excitation which nevertheless is contami-
nated by a small amount of noise. Two kinds of stochastic
forcing, respectively a Gaussian pink noise (referred to as N1)
and an amplitude-limited white noise (N2) have been
employed for the purpose. The method of Poincare sections is
of little use in the present situation. Our main tool has to be
spectral analysis, which has several advantages. In particular,
the power spectrum clearly brings out the relative importance
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Figure 8a: Changes in the spectrum of U with forcing atw= 1,v=0.1
and 5% noise (q./q = 0.05).
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Figure 8b: Influence of increasing levels of N1 when the
deterministic system is frequency locked. Other parameters are v =
0.025,9,=0.05and @ = 3.9. The wide-band spectrum at o.= 0 is due to
the transient chaos. Transients vanish faster in the presence of a
moderate amount of noise, e.g. ata = 0.01 and 0.05.
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of different modes and can give much more insight into the
changes in the solution as the control parameter varies. Typical
results are shown in Figure 8. Analysis with N1 and N2 leads
to the following picture.

In general the presence of a stochastic term in the
forcing influences the route to chaos considerably. When the
system is in the period-doubling regime, the number of bifur-
cations that can be identified goes down as the noise level
increases. This is in agreement with the results of Crutchfield
et al (1980). It is interesting to note that when the steady
behaviour is a frequency-locked state, the system is less
sensitive to the presence of noise. In fact a moderate amount
of noise appears to make the system more strongly periodic.
Also the spectral distribution of noise influences the transition
process considerably.

6 COMPARISONS WITH OBSERVATION

Is there any correlation between what has been
observed in this model and in real open flows? Making this
comparison is still rather difficult chiefly because there is no
experimental study where the flow is periodically forced and
the spectral distribution of other (presumably stochastic)
disturbances is also monitored. Nevertheless, it is interesting
to examine in particular the work of Kachanov et al (1977,
1984a, 1984b), who have studied the spectral evolution of the
fluctuations in a flat-plate boundary layer periodically excited
by a vibrating ribbon; the free-stream turbulence level was
maintained below 0.04% of the mean velocity. Representative
results from these experiments are shown in Figure 9.
Kachanov et al (1984b) and Gaster (unpublished) report that
the forcing amplitude is an important factor in determining the
type of transition. For relatively small amplitudes (typically
less than 1% of the free-stream velocity), one sub-harmonic
and several harmonics of the forcing frequency were observed
before the appearance of a wide-band spectrum; the low
frequency end of the spectrum (i.e. low relative to the peak)
developed more rapidly than that at high frequencies (Figure
9a). On the other hand, for large forcing amplitudes, the high
frequency end underwent rapid changes and the low frequency
end remained relatively unchanged (Figure 9b).

These observations show some qualitative similarity
with the model. For example, both Figures 8a and 9a show a
rapid rise in the energy content at low frequencies. In Figure
8a it may be demonstrated (I) that the system has a tendency
to undergo period-doubling bifurcations (masked to some
extent if there is a stochastic component in the forcing), and
this leads to the rapid filling of the spectrum on the low
frequency side. Though extending this argument to Figure 9a
is not strictly justified, it is tempting to hypothesise that the
latter reveals a tendency for period-doubling bifurcations and
that something similar to the Feigenbaum route (rendered
fuzzy because of free-stream turbulence) is being followed in
the boundary layer. Similar reasoning may be used while
comparing Figures 8b and 9b in both of which the high
frequency side appears to grow more rapidly than the low
frequency end. It can be shown (II) that Figure 8b describes a
situation involving frequency locking in the model and that
chaos in this case was a result of loss of frequency locking

(along what may be called a modified Ruelle-Takens scenario).

It is therefore plausible that the transition seen in Figure 9b is
following this modified Ruelle-Takens scenario, again ren-
dered fuzzy by free-stream turbulence.

The model results show that the exciting frequency is
an important parameter. It is not possible to say whether this is
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Figure 9a: Spectral evolution of the fluctuations in a boundary layer peri-
odically forced at 81.4 Hz by a vibrating ribbon at a distance of 190 mm
from the leading edge; measurements at the height of 1.4 mm above the
surface. The free-stream velocity U_ is 9.18 m/s and free-stream
turbulence level less than 0.04% of U_ (Kachanov et al 1977). Note the
appearance of a sub-harmonic (frequency about 40 Hz) at x = 700 mm
(some other frequencies can also be seen but are not so easily identified),
and at least three super-harmonics at and beyond x = 725 mm. Beyond
x = 800 mm the low-frequency spectrum changes little, but the high
frequency end suggests that continuous development is taking place
even at 900 mm,
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Figure 9b: Spectral evolution of the fluctuations in a boundary layer peri-
odically excited at a distance of 250 mm from the leading edge at 96.4 Hz:
measurements at a height of 4.5 mm from the surface. Free-stream
velocity is 9.18 m/s and turbulence level less than 0.02% (Kachanov et al
1984a). Note how the low frequency end of the spectrum shows little
change over the distance covered by the measurements, whereas the high
frequency end shows continuous evolution.

50 in the real flows too, as in the experiments analysed above
the frequency was not varied over a wide range. It would
however be not surprising if the frequency played a less
dominant role in a boundary layer, as the Tollmien-
Schlichting instability covers a continuous band of
frequencies. Both model and experiment (Meier et al 1987)
show that the spectrum of the stochastic component is
important.
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Figure 10: Example of velocity wace using the linear combination (1).

Finally Figure 10 shows a typical velocity signal from
the present model combined as in (I), and it will be seen to be
not unlike measured turbulent fluctuations.

7 CONCLUSIONS

We have presented a simple dynamical model with
many characteristics similar to those of open fluid flows. The
cascade process is built into the model by postulating a transfer
from large eddy motion (providing one dependent variable) to
small eddy motion (second variable). The model contains a
parameter U which is the analogue of the inverse Reynolds
number, so normalised that linear instability sets in atv = 1
(i.e.v=R/R in the notation of Section 2). All unforced
solutions of the model are nonchaotic. With periodic forcing
the model is “‘receptive’’ to certain frequencies or frequency
bands, and can be shown to exhibit chaos by demonstrating the
existence of homoclinic tangles, horseshoes and positive
Lyapunov characteristic exponents. The value of v at onset of
chaos, v, depends in general on both the amplitude g and
frequency @ of the forcing. However if the frequency is
treated as a hidden variable, i.e. we look for the lowest forcing
amplitude that induces chaos at some frequency, a boundary
that encloses the chaotic regime can be found in the (q,v)
plane. Along the lower boundary of this regime the forcing
level required to trigger chaos goes to zero as v --> 0, though
in its absence there is no chaos. The system therefore has the
property that chaos persists in the high Reynolds limit. On the
other hand there is no chaos for v > 0.76 for any frequency of
the sinusoidal forcing considered; this value of v corresponds
to the critical Reynolds number below which turbulent flow is
not possible under periodic forcing. At extremely high value of
the forcing (above the upper boundary of the chaotic regime in
the (g, v) plane), the system is in forced oscillation, as may be
expected if the flow relaminarises by the mechanism of
domination.

The route to chaos with periodic forcing is not unlike
those observed in closed flow systems. With an additional
stochastic component in the forcing, the transition process is
qualitatively similar to that observed in experimental studies of
a periodically excited boundary layer, and is found to depend
on both the intensity and spectrum of the forcing.

It is hoped that the present work encourages the view
that flow turbulence (including that in open systems) could be
understood as one (albeit complex) instance of dynamical
chaos.

It is unlikely that all open flows can be put into the
same basket: a distinction will probably have to be made
between convectively and absolutely unstable flows. But the
present work does prompt a conjecture on wakes. Wakes have
low instability-critical Reynolds numbers, and, when unstable,
high amplification rates. Going by the evidence on the some-
what similar situation encountered in boundary layers sub-
jected to adverse pressure gradients, we may expect less
sensitivity to environmental disturbances, at least at the levels
usually prevalent in wind tunnels (even the quieter ones).
However, in the present view, a much greater sensitivity
should be observed when the disturbance levels are suffi-
ciently low, i.e. much lower than the lowest now attained. A
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search for this phenomenon may be worthwhile.
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and Professor Philip Holmes. Support in India came from a
grant from the Department of Science & Technology, and in
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Office of the Naval Research, and the Millikan Fund from
Caltech.

REFERENCES

ARNOLD, V.L (1965) Small denominators. L. Mappings of the circum-
ference onto to itself. Amer. Math. Soc. Transl., Ser. 2. 46, pp. 213-284.

AUBRY, N., HOLMES, P., LUMLEY, I.L. & STONE, E. (1988) The
dynamics of coherent structures in the wall region of a turbulent
boundary layers. J. Fluid Mech. 192, pp. 115-173.

BATCHELOR, G.K. (1953) The theory of homogeneous turbulence.
Camb. Uni. Press: Cambridge.

CANTWELL, B.1. & COLES, D. (1983) An experimental study of
entrainment and transport in turbulent near wake of a circular cylinder.
J. Fluid Mech., 136, pp. 321-374.

CORINO, E.R. & BRODKEY, R.S. (1969) A visual investigation of the
wall region in turbulent flow. J. Fluid Mech. 37, pp. 1-30.

CORRSIN, S. & UBEROI, M. (1950) NACA TN 2124.

CRUTCHFIELD, J.P. & HUBERMAN, B.A. (1980) Fluctuations and
onset of chaos. Phys. Leu., 77A, pp. 407-410.

FEIGENBAUM, M.J. (1978) Quantitative universality for a class of non-
linear transformations. J. Stat. Phys., 19, pp. 25-52.

GASTER, M. (1984) In Turbulence and chaotic phenomena in fluids,
ed, T. Tatsumi, pp. 99-106, Elsevier North Holland.

GASTER, M. (unpublished)

GOLLUB, I.P. & BENSON, S.V. (1980) Many routes to turbulent
convection. J. Fluid Mech., 100, pp. 449-470.

GOVINDARAJAN, R. & NARASIMHA, R. (1989) Report TM DU 8901,
National Aero. Lab.

GUKENHEIMER, J. & HOLMES, P. (1983) Non-linear oscillations,
dynamical systems and bifurcations of vector fields. Appl. Math. Sci.,
42, Springer-Verlag: Berlin.

HAQ, B.-L. (1984) Chaos. World Scientific, Singapore.

HERBERT, T. (1988) Secondary stability of boundary layers. Ann. Rev.
Fluid Mech., 20, pp. 487-526.

KACHANOV, YUS., KOZLOV, V.V. & LEVCHENKO, V.YA. (1977)
Non-linear development of a wave in a boundary layer. Fluid Dynamics,
12, pp. 383-390.

KACHANOV, YU.S.,, KOZLOV, V.V, LEVCHENKO, V.YA. &
RAMANAZOV, M.P. (1984a) On the nature of K-breakdown of a laminar

boundary layer. New experimental data. In [UTAM meeting on laminar-
wrbulent transition, Novisibirsk, ed. V.V. Kozlov, pp. 61-73.

KACHANOV, YU.S. & LEVCHENKO, V.Y A. (1984b) The resonant
interaction of disturbances at laminar-turbulent transition in a boundary
layer. J. Fluid Mech., 138, pp. 209-247.

KLINE, S.J., REYNOLDS, W.C., SCHRAUB, F.A. & RUNDSTADLER,
P.W. (1967) The structure of turbulent boundary layers. J. Fluid Mech.,
30, pp. 741-773.



LIEPMANN, H. W. (1961) Free turbulent flows. In Proc International
i , Marseilles. Organised by CNRS
and published by Gordon & Breach, New York (1964).

LORENZ, E.N. (1963) Deterministic non-periodic flow. J. Atmos. Sci.,
20, pp. 130-141.

MEIER, H.U., MICHEL, U. & KREPLIN, H.-P. (1987) The influence of
wind tunnel rbulence on the boundary layer transition. In Perspectives in
Turbulence Studies, eds. H.U. Meier & P. Bradshaw, pp. 47-70, Springer-
Verlag.

MELNIKOV, V K. (1963) On the stability of the center for lime periodic
perturbations. Trans. Moscow Math. Soc., 12, pp. 1-57.

MORKOVIN, M.V. (1969) Critical evaluation of transition from laminar
to turbulent shear layers with emphasis on hypersonically travelling
bodies. Airforce Flight Dynamics Lab. Report AFFDL-TR-68-149.

MORKOVIN, M.V., NAGIB, HM., CORKE, T.C. & WILLIAMS, D.R.
(1987) Speculation in Physics. Amer. Scientist, 75, 119.

NARASIMHA, R. & SREENIVASAN, K.R. (1979) Relaminarisation of
fluid flows. Adv. Appl. Mech., 19, pp. 221-301.

NARASIMHA, R. (1987) Order and chaos in fluid flows. Curr. Sci., 56,
pp. 629-645.

NARASIMHA, R. & BHAT, G.S. (1988) Dynamical systems that mimic
flow turbulence. Curr. Sci. 57, pp. 697-702.

NARASIMHA, R. (1989) Report PD DU 8902, National Aero. Lab.

NEWHOUSE, S.E., RUELLE, D. & TAKENS, F. (1978) Occurrence of
strange axiom A attractors near quasi-periodic flows on Tm (m =3 or
more). Commun. Math. Phys. 64, pp. 35-40.

NISHIOKA, M., [IDA, §. & ICHIKAWA, Y. (1975) An experimental
investigation of the stability of the plane Poiseuille flow. J. Fluid Mech.,
12, pp. 731-751.

OLINGER, D.J. & SREENIVASAN, K.R. (1988) Phys. Rev. Lett., 60,
pp- 797-800.,

ROSHKO, A. (1961) Experiments on the flow past a circular cylinder at
very high Reynolds number. J. Fluid Mech., 10, pp. 345-356.

RUELLE, D. & TAKENS, F. (1971) On the nature of turbulence.
Commun. Math. Phys. 20, pp. 167-192.

SCHUBAUER, G.B. & SKRAMSTAD, H.K. (1948) Laminar-boundary
layer oscillations and transition on a flat plane. NACA Report 909.

SPARROW, C. (1982) The Lorenz equations, birfurcations, chaos and
strange attractors. Appl. Math. Sci., 38, Springer-Verlag, Berlin.

SREENIVASAN, K.R. (1985) In Frontiers of Fluid Mechanics,
ed. §.H. Davis & J.L. Lumley, Springer-Verlag.

STUART, J.T. (1960) On the non-linear mechanics of wave disturbances
in stable and unstable flows, Part 1. The basic behaviour in plane
Poiseuille flow. J. Fluid Mech., 9, pp. 353-370.

STUART, 1.T. (1986) Hydrodynamic stability and turbulent transition. In
s : : o
II1, ed. T. Cebeci, pp. 23-38. Springer-Verlag: Berlin.

THOMPSON, J.M.T. & STEWART, H.B. (1987) Non-linear dynamics
and chaos: geometric methods for engincers and scientists. John Wiley &
Sens, New York.

TOWNSEND, A.A. (1976) The structure of turbulent shear flows. (2nd
ed.), Camb. Uni. Press.

VAN ATTA, C.W. & GHARIB, M. (1987) Order and chaotic vortex
streets behind circular cylinders at low Reynolds numbers. J. Fluid Mech.

174, pp. 113-133,

WATSON, J. (1960) On the non-linear mechanics of wave disturbances in
stable and unstable flows, Part 2. The development of a solution for planc

Poiseuille flow and for plane Couette flow. J. Fluid Mech., 9, pp. 371-389.

WIGGINS, §. (1988) Global bifurcations and chaos: analytical methods.
Springer-Verlag, New York.

WILLIAMSON, CHX. & ROSHKO, A. (1988) J. Fluids and Structures,
2, pp. 355-381.

KS6.8



