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ABSTRACT : The diffusion equation for the trans-—
ported phase with small concentrations is rederived
and some of the approximations inherent in the
standard form of the equation are noted.

An analytic solution for the diffusion equation

in two dimensions is developed under the hypothesis
of constant diffusion coefficients €x , €y

This solution is applied to a variety of injection
medes in steady flow.The results are then ‘compared
with the classical experiments of Jobson and Sayre
(1970) .

Introduction: The diffusion equation for a non-
reacting, transported phase can be solved by a
number of analytical and numerical methods.Methods
of the latter type have predominated lately, but
it is felt that in many cases the analytic solutions
remain useful for their more direct application
and the possibility of checking the asymptotic
behaviour of the numerical computation,

The solution herein developed applies to the case
of stealy source of pollutant, near the surface of
a two dimensional stream.

ANALYSIS :

Following the standard analysis of Daily and
Harleman(1966), the mass flux vector may be
written as:

= P, (vsc - € Ye) @

where

dispersed phase density

velocity of dispersed phase(sediment)
volumetric concentration.

diffusivity tensor.

mioElse
I

If the sediment has a fall velocity & then the
velocity vector Uy may be related to the fluid ve-
locity uwg by :

- - —

Ug = u - @ (2)
This assumption presupposes small inertia for the
sediment particles.Combining these relatiens into
the dispersed phase continuity equation :

¢ s 8 =
E+$,u§}’;] o (3)

there results:

dc o F.[(0-Us)c-E
g 4+ V- [(9-Ts)c € Ve ] (%)

In turn, the equation of conservation of mass for
the fluid is :

% (-cy +V- (I{ (-c)) =0 (5)

From (4) and (5) the divergence of the fluid phase
is:
LUy = V. ((UW-ts)e + € Ve )
V.uy 1 (6)
-

The usual simplifying assumption that V'Uff=0 is thep
true only for small concentrations ¢ when the RHS
of (6) would be negligible , or when equilibrium
conditions in the sediment phase have been reached.
With this simplification ,equation (4) reads:

dc a_c —

ot * axJ -
In turbulent flow, the turbulent diffusion coeffi-
cient defined by the Fickian analogy:

-ujc' = & 9¢3xj

is much larger than the molecular coefficient, so
that the final form of the sediment mass diffusion
equation is :

d e . dc
ngCﬁﬂ C+ q;d{i ) (7)

& de _ 3 (e.9% L wc
-a—-&: + U J a _JKJCGJE)EJ' * ) (8)

Equation (8) has been the staring point for most
studies of sediment and pollutant diffusion, notably
those of Kalinske(1940),Dobbins(1943), and many
others including the paper by Jobson and Sayre

cited before.

Consider now a flow where :

uJ:(U,0,0) -_f(O,w,o)

(9)

represent the mean velocities of the transported
phase.

c 3 ac L L w 10
.a_C-..].Ua-—- (x ]+dy(63 +wc) (10)
ot

For steady,uniform flow (10) reduces to :

' é we =0
the well known Schmidt equation, henceforth refer-
red as the "equilibrium'" condition.

By omitting the first term on the RHS of (10) the
sediment diffusion equation has been solved anati-
tically by Kalinske ,Dobbiens and Mei{1967),under
different boundary conditions.Numerical solutions
have been obtained, among others by Apmann(1969),
Jobson and Sayre(1970) and O'Connor(1970).In all
these cases , the term €y has been assumed
small.

BOUNDARY CONDITIONS:

The boundary condition chosen here is that'no net
transport occurs across the free surface or thee
bottom

ey 3_; +WC =0 for y=0  (11)

)’:Yu
A second boundary condition specifies the initial
concentraticn profile at x=0.Tollowing Keulepan

(1944), no other boundary condition need be speci-
fied.The first boundary condition is different
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from that employed by Kalinske,Apmann and Mei, as
they were treating a problem where the source of t!:
the material was at the channel bottom.Our boundary
condition is more appropriate for the surface injec-
tion of sediment or neutrally buoyant pollutant.
SURFACE INJECTION CONDITIONS :

The dispersed phase(sediment,pollutant) is assumed
to be injected at the surface following the modes
shown in Figure 1.

l } ‘ = 1 — )
k k
TRIANGULAR RECTAN G ULAR EXPONENTIAL
(&) (b) ()

Assumptions regarding the coefficients of the dif-
ferential equation (10):

-Longitudinal velocity U independent of the depth
-Diffusion coefficient €y independent of the depth
-Diffusion coefficient €y constant with x.
~-Sediment fall velocity w is also msumed constant.

Although these assumptions are, to some extent , an
oversimplification of the true behaviour of these
variables,only the constancy of €x with x needed
modification if an improved definition of ¢ for
small x is expected.

Vertical Diffusion Coefficient:As shown by Hinze
(1959) and Montes(1970) the diffusion coefficient
for momentum is practically constant for about 70%
of the depth in the case of pipes and chennels.If
the distribution of €y is calculated from the
experiments by Vanoni(1944,1953), it is found that
the shape of the distribution remaimssimilar to the
momentum diffusion coefficient in pure water flow,
but the maximum values are only about 2/3 as large.
From the similarity of the results in pipes and
channels the chosen value of the vertical diffusion
coefficient is :

€y = 0.067 ugh (12)
£ £,
UxR Uxh
—_ —_— 067
PIPES OPEN CHANNELS
MONTES 1970 VANONI 1953
3 ¥
X R | ; h ,
(] 5 o © 5 1.0

Uniform velocity distribution:This assumption was
prompted by the wish to simplify the analytic solu-
tian.It may be justified by noting that, in turbu-
lent flows,point velocities do not differ more
than 10 % from the mean.In a smooth channel with
logarithmic velocity distribution the diffirence

is less than 8% of the mean.

Longitudinal disprsion coefficient : As Harleman
(1970) points out, the coefficient €x in (10)
should be properly called a dispersion coefficient
as U is taken to be independent of y.Its magnitude
is much larger than that of €y , as confirmed by
Taylor(1954) ,Elder(1959) and Fischer(1964).
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ANALYTIC SOLUTION TO THE DIFFUSION EQUATION

The following set of dimesionless variables may
be defined:
=L © Xpe X i S Exy W
.Lj."h P Je’(','_-j; Uh T | 3]
The sediment diffusion equation (1§) is then
rewritten in terms of these variables.All terms

become dimensionless.
A solution:

C= Cely) + <'(xy) (14)

(13)

is postulated, where ce(y) is the equilibrium solu-
tion achieved for large x, and c'(x,y) is the
""perturbation' of the equilibrium solution at small
values of x.For the perturbation solution it will
be assumed that it is of the "separation of
variables "form:

c'lxyy= X Yiy) (15)

Upon introduction into equation (10) we are led to:

1 n ] i
l -GK.K. u:EHX— +£u.i=--kz (16)
X A bl Y

where k~ is the separation constant.Equation (16)
is eqéivalent to :

lr / ki’ =
x--‘—x~§>(-o

e€x o2 €17 )
L N ! =
Yk Cn Y ' + = T=0 83

The first equation has the solution :

/ 2
XX < C ¢_/4_ I3 "
R=Ceexplze ~Vze2 *ox ) (19)
The second a similar one :

Yoy) = exp(-4 Y(Gs Cosey) +Cysinley) ) (20)

where

1L
=2 (4 Key =8y (21)
255 w2

The complete solution to (10) is then:

C = Ce (y) +exp(@Xx -py X(C5 w5ty + Cq Sinety )
sl ol £ KE L p ooy W 22

where 9=z, 4-‘5&2*5 ’P_+26_5 (22)
The constants C3,C4 and ®€ must be determined from
the boundary conditions.As the net transport across
the bottom and the free surface for the equilibrium
solution (large x) must equal 0,it follows that

for y=0:

Cf e~ 8, Cx 23)
and for y=1 26y
il AR =
(= +(z&) = Y=o,

This last conditions requires :

ot = nT (ﬂ:!,Z....cQ) (25)

The solution to the equlibrium equation with a
constant vertical diffusion coefficient is also
straightforward:

c = A exp( —2y y) (A=a constant) (26)

Hence the complete solution is ,by the linear pro=

perty of (22): oo

Cc=Aexpl- sy )+ exp (gx-py %cn(as niy- ;%smng)(zn

The constants Cn in (27) are determined so as to
satisfy the concentration diéstribution at x=0,and
t constant A by requiring that the mean concenti
tion in the equilibrium region must equel the ini¢
tial mean concentration, Cm

A= Cm2p (p=2) (28)
i~ e*P REY




DETERMINATION OF THE CONSTANTS Cn :
The initial concentration profile at x=0 is descri-
bed by :

c= £(y)

where f(y) is a known function of the depth.To
secure the constants Cn ,one equates:s(27) to this
function and integrates from y=0 to y=1 ,after
having multiplied both sides of the equation by:

(cos mTy - # sin mTy)

from the orthogonality condition of integrals of
the type : !

cosmry cosniy =0  (m=n) (29)
it is found tﬁat Cn may be written as :

1
Cp= 2 J F(y) Y(n) dy

N °° _apy  PY :
F{y)zf{.@._ Ae m\e 5 Y(n):CnShTi!_-f-.}’Trsm""
<imld n
TRIANGULAR INJECTION OF SEDIMENT :
This type of injection is defined in figure l-a.
The concentration is normalised by setting
3

j cdy =1
)

so that the constant A in (28) is defined uniquely
in terms of p.For the triangular injection:

30)

I
Ec dy = (1 - k) cmax/2 (31)
me(w)? [ uH
2 J;” (4)Y(n) - AJE Y(n)d }
o i+ P’/n‘lr‘{ o -{- R o !

the second integral can be shown to be equal to
zero.For this type of injection f(y) is defined as
follows :

f(y)=10 0<y<k
f(y)=2 _(y-k) k<y<l
-k \ Py
Hence Cn equals: Ear 4 Je Y-k Yndﬂ
PEHPRRTt Jy (1-k)?

This integral can be solved in closed form,obtaining

finally:
Cn= Bpe’ {((t—k)~(_L_3 2n1) )

R (R ) 2p (T +p?)
2pdci£zh Kipz)' [ (3p™ ren*)cos nme *%( p3rTsin mrk_—, (32)

RECTANGULAR INJECTION :
This case is described in figure l-b.Here the func-
tion £(y) is defined mathematically by:

]

f(y) =0
f(y) = cmax

0<y<k
key<l

Following identical procedure to the case of trian-
gular injection, one obtains for this case:

= [(ZP(‘QHEPJ- ePk(ZP cosnik +

N )RR+ _
penz (nm—p?_ysinnik) ] (33)
hln?.

For a neutrally buoyant pollutant, euations (32)
and (33) can be considerably simplified, as the
parameter p=0.Thus :

n

Cne A (1) sk
(1-k ¥ nZ?

Triang. Injection (34)
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Ch = - _2‘_. Sin nﬂk
nr(t-k)

EXPONENTIAL INJECTION:

This mode of injection is defined in figure l-c.

In this case :

Rect. Injection (35)

-2p (1-Y
f(y)= Ae -

The coefficients for the series for ¢ are very
laborious to obtain.The final result is :

Cn = 8pe_zr (eSP("')n =i )
(n22 +9p* )1 +P?/Tn?)

when a neutrally buoyant pollutant is injected ,
equation (36) may be shown to reduce to

(36)

o dp _ [(n"-eF] -
qui-nan

Although other forms of injection could be defined,
the general technique remains the same and the
constants may be calculated in most cases.
The simplified form of the diffusion equation solved
by other researchers admits of an almost identital
solution,namely :
o0 - (Gj'ﬂ‘n‘)x 2
CxCe +2.Cn 8 f""s“'fj‘*-fl;— sy ) ((38)
n=1

The series present in equations (32) to 36) are
only slowly convergent and about 100" terms need
be computed for the remainder to become negligible.
Howewer, this operation takes only a short time on
a modern computer.

COMPARISON OF THE ANALYTIC SOLUTION WITH THE
AVAILABLE EXPERIMENTAL RESULTS :

The dispersed phase used in the experiments of Job-

son and Sayre consisted of

a) Glass spheres with a fall velocity of w=17.3
mm/s, and

b) Neutrally buoyant pollutant.

The results of the analytic prediction naturally
depend on the value of the longitudinal dispersion
coefficient which is much affected by the late-
ral dispersion of the stream(Fischer 1966) .Many
analytic and field studies have been conducted in
this regard.It is now accepted that field results

in rough channels give dispersion coefficients
which are approximately up to 2 orders of magnitude
larger than for laboratory channels.Thus Fischer
found that when €x is expressed in the dimensionless

form: €y Ex
Uxh
the spread of the values is:

€y = 10.1 Pipe Flow (G.S. Taylor)
6 2-D Channel Flow (Elder)

25 Various River Data (Fischer)
660 "n mn "

Expressed as a ratio of the vertical diffusion
coefficient ,this ratio seems to have an order of
magnitude of 16 to 10,000 depending on the rough=
ness and curvature of the stream.By comparison
with Jobson's experiments conducted in a laboratory
canal, it was found that a "best fit'" was obtained
when ¥ =1000 .Such best fit took place some
distance from the point of injection.This indicates
that the hypothesis of a constant €x must be revised
if accurate concentrations are to be determined
close to the injection point.



A close examination of the experimental results
of Jobson and Sayre indicates that to obtain pro-
per agreement between the present solution and the
data , not only the longitudinal dispersion coef-
ficient had to be scaled as discussed,but also
an improved fit was obtained when the scaling
ratio with respect to €y was made variable with
distance.For sediment injection the best fit was
obtained by:
-.2x
Ex= (3000 e ) &y (39)

and for neutrally buoyant particles:

-.2%
€x= (20000 & )gy (4n)

For large values of x/h. the importance of the lagi-
tudinal dispersion coefficient decreases, and it
follows that the simplified solution of Dobbins
is also satisfactory.At closer distances to the
injection point the inclusion of the term:

€x d%c/ax?
will improve the accuracy of the solution, given a
correct value of the dispersion coefficient.
The following figures show a comparison of the
calculated and measured concentration distribution
for triangular injection near the surface Eow

sediment.
o 2
h

Jobson and Sayre

Injection at ?F(-Iz 345

Figure 3

jo o [T
~

Figure 5

W

Figure 6

Conclusions : A relatively simple analytic
solution to the sediment diffusion equation has
been developed.The main assumptions are the cons—
tancy of the vertical and longitudinal diffusion
coefficients.By comparison with the experimental
results of Jobson and Sayre(1970) it is found
that the analytic solution gives a fair to good
acount of the concentration distribution.However,
for values of x/h less than about 10,this particu-
lar comparison shows the need for a more precise
definition of the longitudinal dispersion coef-
ficient.At large values of x/h the agreement is
quite good.
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