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I. INTRODUCTION

The unsteady, separated flow past a sharp-edged body serves
as a model for the mechanism of generation of circulation
and the subsequent evolution of a vortex sheet around bod-
ies of aerodynamic interest. The first systematic observa-
tions of edge vortex formation dates back to flow visual-
izations of Prandtl and Tietjens (1904). More recent ex-
periments by Pierce (1961) and Pullin and Perry (1980)
have also focused on the visualization of the starting vor-
tex, although in the latter work there is an attempt for
more quantitative studies. On the computational side, a
number of studies have been undertaken over the past two
decades to model the large-scale vortex sheet motion by
using a finite number of point vortices for inviscid-type
computations (see Krasny (1987) for a review), or by em-
ploying a modified vortex method appropriate for viscous
simulations (Spalart et al (1984)). Although visual agree-
ment with the experiment for the outer large-scale struc-
ture of the rolled-up vortex sheet was obtained in these
previous studies, several important details of the flow field,
especially in the near-wedge-apex region, were missed. To
the best of our knowledge, no accurate computation of
these flows has appeared in the literature to date. Sev-
eral basic fluid dynamics questions associated with these
flows remain unanswered. The most puzzling one, perhaps,
relates to the extent that the suddenly appeared small-
scale undulations of the large-scale vortex sheet, as have
been photographed by Pierce (1961) and Pullin and Perry
(1980), persist, and what exactly the corresponding insta-
bility mechanism might be.

In this work the flow past a wedge-like corner is computed
via direct numerical simulation based on conforming and
nonconforming spectral element methods (Maday and Pa-
tera (1987)). These two different discretization procedures
in the context of the current problem illustrate some of the
essential features of the spectral element method, and in
particular, the flexibility of the method in resolving accu-
rately and efficiently flows in complex, even singular ge-
ometries. The current simulation closely follows the exper-
iments of Pullin and Perry (1980) performed at relatively
low Reynolds number and for different wedge-angles. The
exact geometry consists of a wedge of angle G attached
to the upper wall of a flat channel; the flow is turned on
impulsively at a location upstream of the wedge, and the
transient flow response is_followed in time. Our objective
here is to compare the results of our high-accuracy com-
putation with experimental data and similarity solutions
(Pullin (1979)), and also to provide a detailed data base
for use in validating vortex-type methods in future devel-
opment work.
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In the following, we first review the spectral element method-
ology and explain the two different discretization proce-
dures. We then present results obtained using the two dif-
ferent approaches and compare with experimental data and
results of inviscid similarity solutions; for the comparison
both streamline patterns and the relative position of the
center of the rolled-up sheet are presented.

2. METHODOLOGY

Our objective is the solution of the time-dependent incom-

pressible Navier-Stokes equations in a two-dimensional do-
main {2,

du Vp 2 ;
ﬁ——7-¥uVu+f in (18.)

Vou=0 in Q (1b)
where f includes the nonlinear contributions and any other
forcing terms. These equations are advanced in time using
an explicit/implicit fractional time-stepping scheme (Kar-
niadakis (1989)), which results in a set of separately solv-
able equations for the pressure p(z,y,t) and the velocity
u(z,y,t). The nonlinear terms are treated as a simple
inhomogeneity appearing in the pressure-velocity elliptic
equations. Such a temporal discretization of equations (1)
is consistent with the spatial spectral element discretiza-
tion, where all solvers are constructed on the basis of a
hierarchy of nested operators proceeding from the highest
(for example elliptic contributions) to the lowest deriva-
tives. This philosophy is motivated by the fact that the
highest derivatives in an equation govern the continuity
requirements, conditioning, and stability of the system of
equations (1). Given the brevity of the current paper we
shall limit our discussion to the elliptic equations, an ex-

ample of which is the Helmholtz equation for the viscous
velocity correction,

(V2=2)p=g in Q (2)
where g is an inhomogeneity computed from the previous
pressure substep and A? = 2/(vAt) (for a Crank-Nicolson
scheme) is a positive constant. In addition, let us assume
homogeneous boundary conditions ¢ = 0 on 8. We now

turn to the discretization of (2) using concepts of conform-
ing and nonconforming spectral element techniques.

2.1 Conforming Speciral Element Methods

Equation (2) can be further discretized using planar spec-
tral elements in the z; — z; plane. If we define H} as the
standard Sobolev space that contains functions which sat-
isfy homogeneous boundary conditions and introduce test-



functions 1 € H}, we can then write the equivalent varia-
tional statement of (2) as,
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The spectral element discretization corresponds to numer-
ical quadrature of the variational form (3) restricted to the
space X C H}. The discretization space Xj is defined
in terms of the spectral element discretization parameter
h = (K, Ny, N;), where K is the number of subdomains.

X}, is then the subspace of H} consisting of functions that
are L? over the entire domain  and which are tensor prod-
ucts of piecewise high order polynomials of degree less than
or equal to N; and N, in the z; and z; directions respec-
tively on each subdomain QF. Testing the variational form
with respect to testfunctions of X; and performing all inner
products by Gauss-Lobatto numerical quadrature, Equa-
tion (3) becomes

% N )
ZZ ¢h ¢h

Z”'"Bz Oz;

k=1p=0g=0

[woiz=- [vraz. @)

O 3335 pds il

k=1 F—U q=0

= E E Z Prat i [¥nSles,» (4)

k=1p=049=0

where qu are the appropriate Gauss-Lobatto points and
Ppa = PpPq the corresponding weights. J:q is the Jaco-
bian of the transformation from global to local coordinates
(z1,z2) = (r,s), for the two-dimensional element k. The
next step in implementing (4) is the selection of a basis
which reflects the structure of the piecewise smooth space
Xp. We choose an interpolant basis with components de-
fined in terms of Legendre/Chebyshev-Lagrangian inter-
polants, h;(r;) = &;. Here, r; represents local coordinate
and §;; is the Kronecker-delta symbol. It has been shown in
Maday and Patera (1987) that such a spectral element im-
plementation converges spectrally fast to the exact solution
for a fixed number of elements K and N — oo, for smooth
data and solution, even in non-rectilinear geometries.

Having selected the basis we can proceed in writing the lo-
cal to element k spectral element approximations for ¢f,(or

PE) as follows,
¢§ ' fnﬂhm(r)h"(s) Vm,n € (0! ooy

where ¢%  is the local nodal value of ¢. The geometry
is also represented via similar type tensorial products with
same-order polynomial degree. We then insert (5) into (4)
and choose test functions tmn, which are non-vanishing
at only one global node, to arrive at the discrete matrix
system. A typical conforming spectral element mesh for the
problem we consider here is shown in Figure 1 consisting of
K = 90 elements; the nodes corresponding to the Gauss-
Lobatto Chebyshev points are not shown here. This mesh
was used for the presented results with Ny = N; = 7.

Nl): (01 =2y Nz)! (5)

2.2 Nonconforming Spectral Element Methods

The nonconforming discretization greatly improves the flex-
ibility of the spectral element approach by allowing arbi-
trary element matchups in the geometric mesh while pre-
serving the convergence properties of the spectral element
discretization.

A nonconforming discretization is one in which the dis-
cretization space X), is not a subset of HJ. An addi-
tional consistency error associated with the deviation of X»
from H} is therefore incurred. Unlike other nonconforming
methods (see Strang and Fix (1973) and Dorr (1989)), this
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method is based on the explicit construction of the appro-
priate nonconforming space of approximation to minimize
the consistency error. To define the approximation space
Xh, we first introduce a new structure known as the set of
mortars 4P, which are defined as the intersection of adja-
cent element edges. Upon this structure, @ is defined as
the mortar function, which is a polynomial of degree N in
the local one-dimensional mortar variable s. The approxi-
mation space is then defined as follows. X}, consists of the
functions ¢ in L? that are tensor products of polynomials
of degrees N; and N; in the two directions respectively of
each element k, such that the two following conditions are
satisfied:
1- the vertex condition: at each vertex g of each element,
8(0) = ()
2- the L? condition: over each elemental edge V¥ € Py_,
Sedge(P — @)Tds = 0.
The vertex condition ensures exact continuity at cross points
where the normal derivative has more than one sense. The
L? condition represents a L? minimization of the jump in
functions with orthogonality to N —2nd order polynomials.
The combination of these two conditions ensures the opti-
mality of the discretization, as explained and illustrated in
Mavriplis (1989).

Using the same choice of basis as in (5) for the functions
¢ and performing the inner products by Gauss-Lobatto
quadrature as in (4), the nonconforming discretization in-
curs in practice only a pre- and post-multiplication of ma-
trices in the usual conforming discrete set of matrix equa-
tions. The global Laplace operator can therefore be thought
of as a local operator “mortared” together by the new ma-
trix operators, which serve as a new form of the direct
stiffness procedure.

The domain decomposition decoupling afforded by this for-
mulation allows for efficient parallel implementation. Fur-
thermore all local structure remains intact despite global
irregularity, as in the case of non-propagating mesh refine-
ment. The nonconforming mesh corresponding to the con-
forming mesh of Figure 1 for the wedge calculation is shown
in Figure 2. This mesh has K = 30 elements and was used
to calculate the flow past the wedge with Ny = N,
Note the globally irregular structure and obviously the sav-
ings in resolution and hence computational effort.

3. RESULTS

The results we present here correspond to Reynolds num-
ber R = %— = 1560, where @ is the imposed flowrate, and
v is the fluid viscosity. Two different approaches in flow
visualization have been used for this study: first stream-
line patterns are computed at several time instances during
the time-integration, and secondly the concentration field
of a scalar (mimicking the dye visualization experiment of
Pullin and Perry) was computed along with the equations
of motion. Results from this latter method have been pre-
sented in Karniadakis (1989) and exhibit a remarkable re-
semblance with the photographs taken in the experiment.
Here in Figure 3a-c we plot instantaneous streamlines at
time ¢ = 9sec for three different wedge-angles (60, 96, and
5 degrees respectively). It is seen that the shape of the
primary vortex varies sigificantly as the geometry changes,
and is far from the circular shape described by Kaden’s
(1931) solution. In particular, the innermost spirals are
circular with the outer spirals highly distorted confirming
the results of Krasny (1987). Furthermore, a tertiary vor-
tex system consisting of relatively large eddies appears in
the near-apex wedge region with strength increasing with



the wedge-angle; these counter-rotating eddies appear af-
ter a characteristic time &%, associated with viscous effects.
Such a multiple vortex structure represents a region of al-
most constant vorticity; Pullin and Perry (1980) have ob-
served an identical structure for impulsive flows except for
the case of a slender wedge as is also verified by our simu-
lation (Figure 3c).

The horizontal position z. of the primary growing vor-
tex relative to the wedge-apex is plotted in Figure 4 for
a wedge-angle 60 degrees; also included are the experimen-
tal data of Pullin and Perry (1980) as well as the inviscid
similarity solution given by Pullin (1978). It is seen that
our predictions corresponding to the high resolution simu-
lations fall between the experimental data and the analyt-
ical solution. In particular, it is shown that given that the
similarity theory predicts growth of . o t3/7, the numeri-
cal simulation predicts a faster growth. The experimental
results are in good agreement for early times, however for
time greater than ¢ = 8sec there is a great deviation from
both computation and theory; such a discrepancy is justi-
fied from the fact that the dye diffuses significantly at later
times making the measurement of the vortex center from
the still photographs quite inaccurate. The discrepancy be-
tween the computed position and the one predicted by the
theory should be attributed to the viscous effects; indeed
such a discrepancy appears after time ¢ = t,, after which
strong secondary eddies (Figure 3) are formed which can
displace the center of the vortex and thus modify the dy-
namics of the evolution of the vortex sheet. As regards the
predictions of the nonconforming spectral element simula-
tion it is clear that the wedge-apex region is underresolved
with the secondary eddies barely captured (as seen in Fig-
ure 5) and thus have no effect on the growth of the large-
scale vortex; this perhaps can explain the closer agreement
with the results of inviscid theory. Similar results were
also obtained by Spalart et al (1984) using vortex meth-
ods: in their simulation underresolution of the flow leads
to underestimation of z. even below the inviscid results.

Finally, we address the question of formation of small-scale
vortices at the edge of the rolled-up sheet. Such a phe-
nomenon has been consistently photographed for very slen-
der wedges, however, the cause of its appearance has been
the subject of controversial explanations (Pullin and Perry
(1980)). In Figure 6 we plot the instantaneous stream-
lines for the flow past the 5° wedge at time t = 7sec after
the flow starts. The existence of rather strong wiggles in
the streamline pattern is indicative of distributed centers
of vorticity concentration. However, one may argue that
this is a result of underresolution of flow at the leeward
face of the wedge: experimentation with much finer reso-
lution produced identical results. At later times, however,
(¢ > 10sec) these wiggles disappear and the primary vor-
tex regains a perfectly elliptic shape. The experiments by
Pierce (1961) and Pullin and Perry (1980) for the slen-
der wedge have been performed at much higher Reynolds
number, so no direct comparison can be made with our
calculations; it is expected though that persistence of the
transient instability we observe in our simulations will be
strongly dependent on the Reynolds number. Such an in-
vestigation that addresses stability of the rolled-up shear
layer including the effect of external excitation is currently
underway.

We would like to thank P. Moin and J. Kim for suggesting
this problem to G. Karniadakis as a test for the spectral
element method. Most of the calculations presented here
were performed on the CRAY-X/MP48 at the Pittsburgh
Supercomputing Center.
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Figure 1: Conforming spectral element mesh;
the total number of nodes is 3000
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Figure 5: Instantaneous streamline patierns near
the wedge tip based on nonconforming
spectral element simulations
at time t = 55 (wedge—angle 600)

Figure 3: Instantaneous streamlines at time t=9s
wedge angle (a) 60°; (b) 969; (c) 50
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Figure 4: Horizontal position of the primary
growing vortex relative to the
wedge—apex (wedge—angle 60°)
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