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ABSTRACT

A theoretical study has been made of weak,
unsteady shock wave/boundary interaction in two
dimensions. A simple linear model is first used
to demonstrate the modelling technique. It is
then extended by taking an approach based on
Lighthill’s steady ‘triple-deck’ model. The
resulting two-point boundary value problem is
solved numerically to obtain natural solutions
which indicate that the extent of wupstream
influence decreases with increasing frequency of
perturbation.

INTRODUCTION

A shock wave/boundary layer interaction is
characterised by distortion of a boundary layer
flow through pressure gradients associated with an
impinging shock wave. The effects of this
distortion propagate both upstream and downstream
through the boundary layer. The flow outside the
boundary layer 1is affected in turn by the
expansion and compression waves emitted from the
disturbed boundary layer. This phenomenon can
lead to flow separation in supersonic and
hypersonic intakes and at wing-fuselage junctions.

Shock wave interactions with turbulent
boundary layers are inherently unsteady. Unsteady
interactions can also occur in supersonic panel
flutter and in transonic compressors where shock
waves from rotor blades can impinge momentarily
and periodically on stator blades. This paper
reports theoretical studies of unsteady,
two-dimensional shock wave boundary layer
interactions. Small perturbaticns arising from
weak shock waves are considered in turbulent
boundary layers. The analysis is based first on a
simple model and then on an extension of the
Lighthill (1953) ‘triple-deck’ model.

LIGHTHILL'S TRIPLE-DECK MODEL.

Tsien and Finsten (1949) investigated the
steady, two-dimensional problem of a weak shock
wave interacting with a boundary layer. They
simplified the boundary layer to a uniform
subsonic flow, with the obvious weakness that the
Mach number at the wall was not =zero.
Furthermore, their theory gives no indication of
the value of the Mach number in the boundary
layer. Lighthill (1950) attempted to improve this
model by replacing the uniform layer with a shear
ldayer next to the wall, with Mach number falling
continuously from the free stream Mach number to
zero at the wall. This model failed to predict
the measured extent of upstream influence because
it was everywhere inviscid. Lighthill (1953)
resolved this problem with his ‘triple-deck’
model.
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In the ‘triple-deck’ model the
supersonic stream is the outer deck, with the
boundary layer represented by a rotational,
compressible, inviscid flow as the middle deck and
a viscous, incompressible flow as the inner deck.
The middle deck is both supersonic and subsonic.
It occupies most of the boundary layer and
incorporates the physical mechanisms that
primarily determine the interaction. Lighthill
showed that the thin, viscous sublayer of
thickness L® determines a distance, 0.78L°, from
the wall at which an effective wall can be located
and above which viscosity can be ignored.
Hereafter, we take y* = 0 at the effective wall to
be the bottom of the inner deck. (Note that
starred quantities are dimensional).

external

Lighthill defines the length of wupstreanm
influence in terms of an Iinverse logarithmic
decrement Kj! (i.e. the distance in which the
disturbance due to the shock wave is reduced by
the factor of e71). His  second-order
approximation to Ki‘ is given by
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M(y") is the Mach number profile across the middle
deck of thickness &°, M; is the free stream Mach
number and B2 = M - 1. At y* =0, M=M, = 0.
Lighthill showed that Kj! given by (1) is
independent of the precise value chosen for &°.
He also showed that the Mach number M, is given by
(2).

0.78 M’ (0) L® .

Mp (2)

Lastly, Lighthill derived (3) for the
thickness L* of the viscous sublayer in terms of
the kinematic viscosity vy" at the wall and the
velocity gradient U®/ (0).

v, 1/3
L* = |— (3)
K, U" (0)
Clearly, an iterative procedure and assumed

U(y®) and M(y®) are needed to find the inverse
logarithmic decrement Kj! from the implicit set of
equations (1) to (3).

A SIMPLE UNSTEADY MODEL

The essential features of an unsteady, two-
dimensional shock wave/boundary layer interaction
can be determined from an extension of the steady
model of Tsien and Finsten ° (1949). With a
Jjudicious choice of the arbitrary Mach number at
the wall, the simple model does provide some



understanding over the full range of frequency of
unsteadiness, whereas the authors’ extension of
the triple-deck model at present is limited to low
frequencies. The simple model also provides the
framework for the more complicated analysis of the
triple-deck model.

The simple model is described in detail by
Mahkri and Simmons (1987). It comprises a main
supersonic stream at Mach number M; and a uniform
subsonic layer next to the wall at arbitrary Mach
number M. The subsonic layer is treated as a
perfect gas with constant specific heats and zero
viscosity and thermal conductivity. The unsteady,
two-dimensional equations of continuity and
momentum, with x* in the main stream direction and
y® normal to the wall, are
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o (P'u') + Eg' (p'v') " g%, =0, (4)
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The fact that entropy remains constant along
the streamlines is expressed by

. .
ax* + V‘a—p-

ap*
By + ==e|. (7)

at

The basic flow is perturbed by time-varying
and spatially-varying pressure in the main stream.
Within the interaction zone the velocities in the
x*- and y'- directions are U® + u® and v®, the
density is R" + p®, the pressure is P® + p®and the
local speed of sound is A® + a'. By neglecting
second-order terms, the governing linear equations
for the perturbation quantities are obtained.
They are made non-dimensional by introducing
x = x*/38°, y = y*/3", u = u*/U*, v = v*/U",
t = t*u*8*, p=p"Y/R* and p = (p*-P*)/(3P"),
where 8" is the thickness of the layer.

The y-momentum equation becomes trivial in
this simple model. The non-dimensional,
linearised equations for continuity, x-momentum
and constant entropy are (8), (9) and (10).

du  dp  dv  dp _

= taxta Tt 9. ¢ (8)

u du _ _1 &p
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Equations (8) and (10) can be combined to

eliminate density. Then only (11) and (12) are
needed

du ap av  8p

E§+§+§+Bt 0, (11)

du  du _ _ 1 ap

My
To reduce the number of unknowns in (11) and

(12) to two, some approximations are needed.
First, consider the term &v/dy. To a first
approximation,

av' _ v*

Fy‘ 3 (13)

Now follow the motion of a fluid particle in
the boundary layer but at the interface with the
main stream. Then
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& _ -ay‘ gx.

v = UF + Bé . (14) |
where y; is the value of y* at the interface. It
follows that, in non-dimensiocnal form,

av _ v 8y,

3y = T FE - (15)

Next consider the spatial and temporal
pressure perturbations, p, at the Iinterface

between the boundary layer and the main stream.
It 1is assumed that the spatial and temporal
perturbations combine linearly. The spatial
component of perturbations due to change in the
x-direction is given by the steady Prandtl-Meyer
result, which is, in non-dimensional form,

2
La_y,
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The temporal component of perturbation can be
predicted by linearising the expression (17) for
the pressure on the surface of a piston moving
into a duct of constant cross-section, where the
gas was initially at rest (Liepmann and Roshko,
1967).

. -1 ay®/at*] 3/ -0
Bl - [1 » 3t YAQ"_] . (17)
The linearised non-dimensional result is
a
p o= M FP. (18)
Hence, combining spatial and temporal
perturbations, and noting that pressure Iis

independent of y in the boundary layer for this
simple model, it follows that
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Substituting (15) and (19) into (11) and (12)

yields the governing equations (20) and (21) in
two dependent variables, u and y;. In practice,

these perturbations are generated by applied
perturbations in pressure.
au 8yy , 8y, a2y, 92y, 2y, _
% "5 tot * P2 * Pzt *Fppe 0. (20
du  du 82y, 82y,
=t tBme *Coaxat - 90 (21)
M2
where B=-— ' 1 c = E% ;
M-V M -1 2
M2 M2
D= ——— , E = M, + : -
M- M- 1
F= M .

If spatial and temporal perturbations are
assumed to be periodic, (20) and (21) define an
eigenvalue problem with solution

u = ue™re™ (22)
and

vi = ¥ e e (23)
Here u and ;1 are complex, defining both relative



magnitude and phase relations,

¢ = K+ i2mn (24)
and

w = Q + 1B (25)
k is the logarithmic decrement of upstream

influence, n the wave number or reciprocal of the
wavelength, and B the dimensionless frequency.
The measure of temporal decay is Q.

Substitution of (22) and (23)

(21) yields, in matrix form,
u 0
| = . (26)
Y1 0

It follows that, for non-trivial sclutions,

into (20) and

¢ (¢ + w + Do? + Eow + Fu?)

(¢ + w) (B2 + Cow)

(B-D)o3 + [(C-D=-Elw - 1]¢?
-[2w + (E + Fle?le - w2 - Fu?

Q. 27)

For a given value of the complex decay rate
¢, the corresponding complex frequency ® can be
determined from (27).

Results.

Solutions of (26) which are stationary in
time are sought by setting © = 0 in (25). Then
for given x, u and y, become periodic in time,

with non-dimensional circular frequency §.
Equation (27) then becomes
(B - D)o + [-1 + i(C = D - E)Blo?

+ [(E + F)B2 - i2Ble + [B2 + iFB3] = 0.(28)

For a given B, (28) is a cubic equation in
complex ¢ with complex coefficients that are
functions of free stream Mach number M; and
subsonic boundary layer Mach number M,. It has
been solved numerically over a range of B, M; and
M. For each B there is only one complex solution
for ¢ with a positive real part. The other two
are discarded because they are physically
unrealistic. Of particular interest is the real
part Kk of o because its inverse is the distance
upstream of a station x at which the perturbations
have fallen to 1/e of their magnitudes at x. Thus
k! is a measure analogous to the inverse
logarithmic decrement K;i! in Lighthill's steady
triple-deck model. However, k~! is dependent on
frequency B.

Typical variations of upstream influence k™!
with frequency B are shown in Figure 1. The
arbitrary values of M, have been chosen to give
values of upstream influence at 8§ = 0 that are in
reasonable agreement with those predicted for
steady turbulent boundary layers by the rigorous
triple-deck model. By doing this, some physical
significance can be assigned to the results. In
particular k™! falls from a limit at low B to a
smaller limit at high B. It must be noted that
the value of this simple model is that it is not
restricted by a low frequency assumption. The
following unsteady extension of the triple-deck
model is restricted to low frequencies.

AN UNSTEADY TRIPLE-DECK MODEL.

In this section an unsteady two-dimensional
model is based on an extension of Lighthill’s
steady triple-deck model. Governing linearised
equations are found for the middle deck. Boundary
conditions for this deck are set at the top (y=1)
by the main stream and at the bottom (y=0) by the
Lighthill steady theory. Unlike the simple model,
flow properties now vary with distance y through
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Figure 1 Simple model predictions of dependence

of upstream influence kK~ on frequency B.

the layer. By following a procedure similar to
that used for the simple model, the linearised
non-dimensional equations (29), (30) and (31)
result for combined continuity and entropy and for

x- and y-momentum for the rotational,
compressible and inviscid middle deck.
G, op,ou v _
Uly) % 3k T ant 3y 0, (29)
du , v au(y) 1 du._. 1 dp
ax UG ay O at - weyy VW) a0
Bv B . _ 1 2 dp
Uly) 7wt A Eeo) U2(y) 3y . (31)
Velocities are normalised by the mean

x-velocity, U;, at the top of the middle deck and
U(y) is the non-dimensional mean velocity profile.

It is convenient to replace v with the local flow
direction n such that

v n Uly) . (32)

Equations (29), (30) and (31) then yield
(34) and (35) after some manipulation.

(33),

ani = [yF? _ 4| 8 _ 1 dp 1 8u
ay [M (y) 1] ax ~ Uly) at T uelyy ax 0 )
Bu, 1 &8u auly) _ _ gy 8D

an 1, an _ _ a2 ap
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If spatial and temporal perturbations are
assumed to be periodic, (33) to (35) define an

eigenfunction problem with solution
p = ply) ™ ™, (36)
u o= uly) e et (37)
n . = nly) ™ . (38)

The complex velocity u can be eliminated,
thereby reducing the equations to a set of two,
written in matrix form as (39).

‘;—3 G H n
@ = 2 (39)
ay J 0 P
~ - au(y)
where G = GryTI0(y)oval ~ay



_ _ w cwM? (y)
H = (M(y) - 1)o ) ~ Tlyiete
3 _ M2 (y)[U(y)e + w]
Uly
Again, ¢ and w are complex but we seek

solutions that are stationary in time (w = ip).
We choose U(y) and M(y) empirically, set boundary
conditions and solve (39) for ¢ = k + i2mn over a
range of frequency B.

Following Stalker (1984) we assume simple
turbulent boundary layer profiles,

U= (y + 0.78L)"7 (40)

M =M (y +0.78L)"% ,

and
(41)

where L = L*/8" is given by (3) and is small so
that y = 1 at the top of the middle deck.

In non-dimensional form, (3) becomes

1/3

L =0 7on|2 b | oo, (42)
K, U’ (0)
where K; 1is obtained from Lighthill's steady

theory and non-dimensional v, becomes the Reynolds
number based on 8°, free stream velocity U] and
kinematic viscosity wvy. (Mahkri and Simmons,
1987).

Following Lighthill, we assume the boundary
condition at the effective wall at the bottom of
the middle deck to be

n 0+ i0 at y a ; (43)

At the top of the middle deck (y = 1) we assume a
small perturbation

p = P+ i0 (44)
and the steady Prandtl-Meyer relation,
= VM -1
Tias Pies—— (45)
My
This amounts to 1imposing a low frequency

restriction on the model. The main stream at
y = 1 must traverse a disturbance wavelength 1/n
in a time that 1is short compared with :the
disturbance period, 2n/B. These two times are
equal when B = 2m.

With (39) being four real equations and (43),
(44) and (45) being six real boundary conditions,
the problem is overdetermined and, for a given B,
there are only solutions for special values of o
(eigenvalues). It is a two-point boundary value
problem that has been solved numerically by a
shooting method, shooting from y =1 to y = 0.

Results.

Typical variations of upstream influence Kt
with frequency B are shown in Figure 12 for two
Mach numbers and p = 0.05. Values of k at B =0
(less than one boundary layer thickness) are
consistent with those obtained by Lighthill (1953)
and many experiments. The decrease of upstream
influence with increasing B is apparent, although
the model is restricted to low B (less than about
2 or 3). The chosen Reynolds number v, based on
8" is 1x10°, ensuring that the boundary layer is
turbulent. 1In all cases, M; was low, in the range
0.17 to 0.27, and the thickness L of the viscous
sublayer was typically one percent of the boundary
layer thickness.

The fact that the upstream influence cannot
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Figure 2 Unsteady predictions of dependence of
upstream influence kK = on frequency B.

be predicted for Mach numbers greater than about 2
is not surprising. The upstream influence through
the subsonic part of the boundary layer is then
annulled by the downstream transmission of
perturbations in the supersonic part of the free
stream along characteristics in the boundary
layer, a phenomenon noted by Lighthill. It is
possible, however, that more refined assumptions
for velocity and Mach number profiles will
increase the free stream Mach number to which
upstream influence can be predicted.

CONCLUSIONS
Both the simple model and the triple-deck

model predict a degree of upstream influence which
is consistent with steady experiments (Lighthill,

1953) and which decreases with increasing’
frequency. It must be stressed that only the
natural response of the boundary layer, expressed

in terms of eigenvalues and eigenfunctions, has
been found. However, a similar extent of upstream
influence can be expected in situations involving
small, forced perturbations arising, for example,
from an oscillating, weak shock wave.

The wunsteady triple-deck model contains
empiricism in the formed of assumed mean velocity
and Mach number profiles. This empiricism
provides flexibility; more refined turbulent and
laminar boundary layer profiles can easily be
included.
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