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ABSTRACT

We discuss calculations wusing the equilibrium flux
method, for the hypervelocity flow of nitrogen with
dissociation/recombination chemical reactions about a
slightly blunted cone at incidence. Test results for
frozen flow are compared with the cone flow results of
Marconi (1989). Specific examples using the
Lighthill-Freeman model of the ideal dissociating gas
show substantial interaction between gas dynamics and
chemistry on the leeward cone surface.

1. INTRODUCTION

A good understanding of the interaction between real
gas nonequilibrium chemistry and three-dimensional
hypervelocity aerodynamics may be important in the
design of single-stage-to-orbit (SS0O) space vehicles.
During ascent to orbit real-gas effects should be
confined to stagnation zones and to the internal flow
in  scramjet-type power plants. Reentry to the
atmosphere of a slender SSO vehicle at hypervelocity
speeds will produce sustained periods of flight with
chemical reactions in the external flow behind the body
shock wave, and these in turn will interact with
aerodynamic phenomena including shock induced
separation and transition to turbulence in the boundary
layer. Such effects are little understood.

Numerical prediction of real-gas hypervelocity leeward
flows is likely to be very difficult and will clearly
require progress in the development of both Euler and
Navier-Stokes codes coupled to a realistic chemistry
model for reactive air. In this paper, as a first step,
we describe an application of the Equilibrium Flux
Method (EFM Pullin 1980) to the numerical simulation of
the Euler equations for three-dimensional hypervelocity
flow of nitrogen about cone-shaped bodies at incidence.
The only chemical reactions present are the
dissociation and recombination reactions

Ny + M <====> 2N + M,

where the collision partner M = N or N, These
reactions give a good ' qualitative description of the
real gas behaviour of air. We use the Lighthill-Freeman
(Freeman 1958) ideal dissociating gas (IDG) model to
represent nitrogen. Non-equilibrium reacting flows and
perfect gas (frozen chemistry) flows are considered.
The computations are complementary to experiments on
hypervelocity flow past bodies of revolution at
incidence being performed in the T4 shock tunnel at the
University of Queensland (Krek et al, 1989). Ultimately
we plan to match the free-stream conditions for the
computations to those produced in the test section of
the shock tunnel. Our present aim is to test the
numerical method against known results for frozen flow
and to describe some preliminary results, with near
experimental free-stream conditions, in order to
illustrate the effects of non-equilibrium chemistry on
the flow.

2. THE EQUILIBRIUM FLUX METHOD (EFM)

EFM may be interpreted as the infinite collision rate
limit of the Monte-Carlo Direct Simulation Method (Bird
1976) for rarefied gas dynamics. It is a finite-volume
shock-capturing method and, since it is naturally
flux-splitting (Deshpande 1986), it is automatically
upwinding. EFM has none of the stability problems
encountered by many numerical methods when applied to
mixed subsonic-supersonic flows. Here we give a brief
description of EFM; detailed descriptions are given by
Pullin (1980) and Macrossan (1989). EFM may be obtained
from the Boltzmann equation (see Bird 1976),

2.(0f) + c.V(f) = [8(nf)/Bt] gy m

where n is the number density, ¢ = (c,cy,c,) is the
molecular velocity, f is the velocity -distribution
function and the RHS represents the collision integral.

Now consider a volume V of (x,y,z) space divided into N
contiguous cells of vyolume V; for i = I,N. Let S be the
surface of V; and n the outward normal. Conservation
equations for the continuum properties of mass,
momentum and energy can be obtained by first
multiplying (1) by the corresponding molecular quantity

Q = [m, me, mlivz ¢+ ey)], where m is the molecular
mass and e, is the specific energy in the molecular
structure  (including chemical energy), and then

integrating over V,; and over all velocities. Applying
Gauss's theorgm to the second volume integral and
noting that J_ Q [8(nf)atl,,dc = O then gives

%J' EdV+J<noc>ds=o, (2)
v s

where

nQ = J‘manf‘dc, <nQc> = I?anf‘c.ﬁ de, (3)
with de=dc,deydc,. The components of nQ are [p, pv,
plirev® + e,)] where p is the fluid density, v = ¢ is
the velocity and e;,, is the specific internal energy.

EFM proceeds by integrating (2-3) forward in time t
under the assumption that nf is given by the local
Maxwellian distribution

nfy = n8° expl-B(c-v)’I/n’" (4)

where B = (ZRT)_%, T is the temperature and R is the
ordinary gas constant. In first-order EFM it is assumed
that all gas properties are constant across each cell
and are discontinuous at the interfaces between the
cells. Let + and - refer to the interior and exterior
of V, respectively. Then <nQc> in (3) may be split as

Qe = fTnofl e de + [ Tnofy ch de 5)

where ,,l‘+ and [ denote integration over outward moving
(c.cn > 0) and inward moving (ec.n < 0) particles
respectively. Now if at time t all gas properties in
cells are known then fy and fy are known and (5) can be
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evaluated analytically. Putting Q = m, for example,
gives the outward and inward directed mass fluxes as

2
po>T= B_lexp(-s") + o% sTH(sT) Mien?) (6)

™

where si = ict.ﬁ Bi are the outward and inward
components of the normal speed ratio, H(s) = 1 + erf(s)
and erf is the error function. The net mass flux across
dS is <pc>’- <pc>. Similar expressions are obtained for
the other components of <nQc>. At the end of each time
step At new gas properties are calculated from the
totals of nQ in each cell and the known cell veolumes.

The chemical reactions are de-coupled from the gas
dynamics over At. First the reactions are assumed to be
frozen and the fluxes between cells are computed using
the gas constant and e, for the local (frozen)
chemical composition. Before the fluxes in the next At
are calculated, an adiabatic chemical reaction in each
cell is advanced for At at a rate appropriate to the
local density and temperature. The chemical composition
and the temperature, but no other fluid properties, are
changed by the reaction.

The law of mass action for the ideal dissociating gas
(Lighthill 1957) is

o/ - @) = pa’p expl-84/T) , (7)

where « = [N]/(IN] + 2IN,]) is the mass fraction of
dissociated nitrogen, 6y = 113,200 K and p; = 130
gm/cc. The equation of state for the reacting mixture
and the ratio of specific heats y are given by

p =p (1 +a)R,T, y = (4 + a)/3, (8)
respectively, where p is pressure and R, , is the
ordinary gas constant for N,. The IDG model is a good
representation of N, for T » 2000 K and for « > 0.05,
conditions which are to be expected in hypervelocity
flight.

Following Freeman (1958), the chemical rate equation
for IDG can be written as

dee/dt = p Xlo,T) [ (1 - &) exp(-Bd/T} - przz/pd] ,  [(9a)
where
" M
X(e,T) =[CT @ + 2 C,T “(1 - a)l/W, (9b)

and W is the molecular weight of N, We_have taken the
values of C; = 8.5x107", C; = 2.3x10 (cgs units),
n = -2.5 and n, = -3.5 (Kewley and Hornung 1974).

In the present calculations At was such that the CFL
number in any cell was less than 1 and much smaller
than the characteristic reaction time (de/dt)” in each
cell. Consequently a simple Euler method was used to
advance the chemical reactions.

3. FREE-STREAM CONDITIONS AND BODY GEOMETRY

The free-stream conditions, cone semi-angle 8 and angle
of attack 8 for the four calculations discussed
presently are summarized in table 1. Case 1 was used to
test the «code against the accurate cone-flow
calculations of Marconi (1989). Cases 2-4 have the same
geometry and similar free-stream conditions but
chemistry is active only in cases 3-4. The free stream
velocity U lies in the x-y plane at an angle 6 to the
positive x-axis which is coincident with the body axis.
The body had a small blunted nose in the form of a
cubic of revolution beginning at x = 0 and which joined
smoothly onto the cone at x = .05L, where L is the body
length. Because of symmetry only one half of the flow
(z > 0) need be considered.

Two computational grids were used. Grid | surrounded
the body nose and consisted of N;xN,xN; = 3x25x50
cells, where N, N, and N5 are the cell numbers along
the body generator, normal to the body generator and

Case M 3 a e Chemistry

1 5 10 20 1.4 frozen

2 6 15 30 1.4 frozen

3 6 15 30 1.4 finite rate
U = 6km/s p = 6x10 “kg/m®
« =02 T =2000 K L=1m

4 6 15 30 1.4 finite rate

as for case 3 but p = 2x10 ‘kg/m"

TABLE 1. Freestream conditions

azimuthally between the windward and leeward flow
planes respectively. Grid 2 started at the downstream
end of grid 1 and contained 22x50x100 cells.

Different modes of EFM were used on grids 1 and 2. On
grid 1 a “time marching” mode was used in which the
conservation equations were integrated simultaneously
in all cells, starting from impulsive initial
conditions, until steady state was reached. This was
necessary because there is a small region of subsonic
flow near the body nose. On grid 2 a space marching
mode was used, in which steady state was found on
successive slices of the grid approximately parallel to
the y-z plane. This can only be successful if the flow
on grid 2 is always supersonic. For both modes the CFL
number was near 0.5.

4. HYPERVELOCITY CONE FLOW

The general structure of hypersonic cone-flow at
incidence has been demonstrated by the cone-flow
calculations of Marconi (1989). These results show that
with frozen chemistry (i.e. ¥ constant), the flow is
conical. A bow shock is followed by weakly rotational
flow in the shock layer adjacent to the windward cone
surface. The gas expands rapidly on the leeward surface
but undergoes recompression when approaching the
leeward plane of symmetry. For sufficiently large angle
of attack at hypersonic Mach number this produces a
pair of cross-flow shocks and the resulting large
entropy gradient along the leeward side of these shocks
generates a complex flow structure containing one or
more pairs of compact vortices coupled with separated
flow from the cone surface. Marconi shows that this
structure is essentially inviscid although it will be
modified by the presence of the cone boundary layer
which will contribute to the post-shock vorticity field
via shock-induced separation.

Figure 1 shows the surface pressure for case 1 plotted
as In(p/pg) at x/L = 0.852 versus azimuthal angle ¢
measured from the windward ray of symmetry, compared
with Marconi's results for pure cone flow. There is
good agreement on the windward surface, where the
surface pressure is dominated by the free-stream
dynamic pressure, and the position of the leeward
cross-flow shock is accurately captured by the present
computations. On the leeward side of the cross-flow
shocks Marconi finds various spiral vortex structures
depending on 8, 8 and M. For case 1 our calculations do
not reproduce this structure in detail. Marconi's
shock-fitting numerical method is of high order
spatially but is implemented for strictly cone flow.
The EFM technique is robust geometrically and can
easily accommodate chemical reactions but is presently
implemented in only first-order spatially accurate
form. This may account for the discrepancies of figure
1. A second or higher spatial-order EFM will be
required to resoclve flow details behind the leeward
shock.

Figures 3-7 show perspective views of four surfaces of
grid 2 : the plane of symmetry (x-y plane) comprising
the windward (lower, ¢ = Q) and leeward (upper,
¢ = 180 ) portions ; the cone surface ; and a curved
surface in the flow locally normal to the cone surface
and located- near the downstream end of grid 2. The
viewpoint is upstream of the body, somewhat above the
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x-z plane. Figures 3-4 and 6-7 show contours of various
flow quantities on the four surfaces. Figure 5 depicts
three-dimensional velocity vectors at a subset of cell
centres on the four surfaces for case 4, table 1. The
bow and leeward shocks are clearly visible and the
curved particle paths at the cone surface can be
inferred.

In figure 3 we show contours of « for the chemically
active flow of case 4. In order to test the first-order
effects of chemistry for the cone-flow, the parameters
for cases 3-4 were chosen to match geometry, ¥ and, as
near as possible, M to the frozen flow of case 2.
Consequently, with a« = 0.2 the freestream is not in
local chemical equilibrium, and some recombination
occurs before the flow encounters the bow shock wave.
This can be seen in figure 3 and also in the contour
plot of In(T/Ty) in figure 7 (T, is the initial free
stream temperature), where the temperature rises
upstream of the bow shock owing to energy released in
the recombination reaction.

The wvariation of « in the flow is perhaps best
evaluated by comparing figure 3 with the contours of
@eq~®, shown for a.-oe < O in figure 4. We define «.q
as a local adiabatic equilibrium value of the
dissociation fraction, calculated from the local flow
state assuming equilibrium with no change in specific
internal energy. Note from figure 4 that Oeq—0t IS
negative over most of the flow, indicating that
recombination is the locally dominant reaction.
Together figures 3-4 indicate that, following the rapid
gas temperature rise through the bow shock (see figure
1), G.q—e is positive and that consequently the flow
begins to dissociate strongly just downstream of the
shock. Dissociation appears to be confined to a thin
region near the shock and also adjacent to the windward
plane of symmetry. Fluid processed by the shock very
near ¢ = 0, and which remains near the windward
symmetry plane until well downstream (see figure 5)
thus becomes frozen or quenched (Stalker 1989) in a
dissociated state. Away from ¢ = 0 the temperature
falls quickly as dissociation soaks up thermal energy
and the density rises. Recombination then nearly equals
dissociation, which decreases rapidly as T decreases
and the flow approaches local chemical equilibrium.

As the flow approaches the leeward surface ¢ > 90“, T
is falling and dissociation stops owing to the
exp(-84/T) effect (see eq (9a)), but recombination
continues. Since the recombination rate is proportional
to p°, however, and since p falls rapidly in the
leeward flow, recombination is insufficient to bring
the flow to local equilibrium. The leeward flow then
becomes nearly frozen, the mechanism being similar to
that which gives chemical freezing in rapidly expanding
nozzle flows. Note that figure 3 shows « not constant
along rays from the cone nose, and so in this respect
the flow is far from conical.

+3
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Figure 1. Cone surface pressure at constant x plotted
as Inlp/p,) versus azimuthal angle ¢, where pg is the
freestream pressure. Case L ——————— present
calculation, x/L. = 0.852. + Marconi (1989).

When the flow is processed by the leeward shock, p
increases and recombination increases. This moves the
gas toward equilibrium as can be seen from figure 4,
which shows |a.q-a| decreasing behind the leeward
shock.

Finally we note that active chemistry appears to
influence the position of the leeward shock. This is
evident from a comparison of the temperature fields in
figures 6 and 7, and also from the surface pressure
plots in figure 2.

5. CONCLUSIONS

Our results show that the equilibrium flux method for
simulation of the Euler equations can be adapted to 3-D
gas flows with dissociation/recombination chemical
reactions. Improvements in EFM currently under
development include : (1) Implementation of a second
order scheme for the flux calculation which accounts
for gradients of flow properties across cells. First
order EFM has numerical viscosity proportional to cell
dimension (Macrossan 1989), whereas a second order
scheme may be expected to change this dependence to
order the square of the cell dimension. (2) Inclusion
of viscous shear stresses in the flux equations. This
is only feasible for a second or higher order
method. (3) Implementation of a realistic multiple
species/reaction model for air.

In future work we will attempt to assess real gas
effects for flows achievable in the T4 wind tunnel, and
to relate experimental results te those for an
equilibrium freestream at true hypervelocity flight
conditions. We also plan to investigate possible
scaling laws through parametric studies.
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Figure 2. Cone surface pressure In{p/py) versus ¢. Key
a: case 2 (frozen flow), b : case 4, ¢ : case 3 - This
flow is near chemical equilibrium.
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Figure 3. Perspective view of contours of «, on four Figure 4. Perspective view of contours of a,q—« on four

surfaces within grid 2 : windward and leeward planes ; surfaces within grid 2. Only @, negative depicted.
cone surface ; a curved slice locally normal to cone Case 4. Range : -0.095 < o« = 0. Full range in
surface at x/L = 0.852. Case 4, range: 0.14 < « < 0.35. calculation : -0.095 < o g <.0.065.
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Figure 5. Perspective view of velocity vectors on four
surfaces of grid 2. Case 4.

of In(T/T,) on Figure 7. Perspective view of contours of In(T/Tg) on
four surfaces within grid 2. Case 4. Range

0 = In(T/Ty) < 1.55

Figure 6. Perspective view of contours
four surfaces within grid 2. Case 2 : frozen flow.
Range : -0.05 < In (T/Tgy) < L.75
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