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ABSTRACT

Buoyancy-driven flows resulting from the introduction of fluid
of one density into a crack embedded in an elastic solid of different
density are analysed. Scaling arguments are used to investigate the
various regimes of crack propagation. Nonlinear equations governing
the shape and rate of spread of the propagating crack are solved for
the cases of vertical propagation of buoyant fluid released into a solid
of greater density and of lateral propagation of fluid released at an
interface between an upper layer of lesser density and a lower layer of
greater density. The theoretical solutions provide simple models for
the vertical transport of molten rock, or magma, through the Earth’s
lithosphere and in the lateral intrusion of magma at a neutral-buoyancy
level close to the Earth’s surface.

1. INTRODUCTION

The transport of magma by fissures, or dykes, opened by
fluid-induced fracture of the Earth’s lithosphere is an important
and intriguing phenomenon. Magma-fracture is responsible for the
transport through the lithosphere of nearly all the melt produced in
the underlying mantle. However, the impossibility of making direct
observations of the formation -of dykes has limited our understanding
of the controlling parameters and physical balances. It is our purpose
to analyse the governing balance of stresses for a propagating, fluid-
filled fracture and to present solutions of problems of crack propagation
which are directly relevant to the transport of magma.

Magmas produced in the upper regions of the Earth’s mantle are
less dense than the surrounding rock and rise to collect at the base of
the overlying cold and brittle lithosphere. Subsequent transport of the
magma towards the surface takes place in dykes which crack through
the lithosphere at speeds of order a few metres per second, driven by
the buoyancy of the magma. During this stage of magma-transport,
we are concerned with the vertical propagation of a buoyant fluid-
filled crack which is fed from a source at its base. Most melts are less
dense than the uppermost few kilometres of the Earth’s lithosphere. In
such cases, the propagation of vertical dykes ceases near the neutral-
buoyancy level of the melt (Ryan 1987; Walker 1989). The dyke system
may subsequently cut the Earth’s surface and cause fissure eruptions
but, more commonly, it is observed that the dykes propagate laterally
rather than vertically (Rubin & Pollard 1987) and that the majority
of the magma fails to reach the surface. During this stage of magma-
transport, we are interested in the lateral propagation of a crack in a
stratified solid, where the crack is fed with fluid at its neutral-buoyancy
level.

Many previous studies of dykes have examined the exposed re-
mains of solidified intrusions and related them to theoretical solutions
for the shape of a stationary fluid-filled crack. These solutions are
sometimes extended to give a quasi-static description of a propagating
crack in which the criterion for propagation is defined by the static
stress field and dynamical effects, such as the viscous pressure drop
in the fluid, are ignored. A solution which does incorporate the
dynamical interaction between the fluid-mechanical and elastic forces
was derived for two-dimensional cracks in which buoyancy forces are
negligible (Spence & Sharp 1985). Here we present dynamical solutions
which incorporate the geophysically important effects of buoyancy.
Specifically, we consider solutions appropriate to the geophysical
regime for the cases of vertical and lateral propagation described
above (see figure 1). Throughout, we consider only laminar flow; it
is, however, possible to solve for turbulent flows (Lister 1989b).

4.5

P
= s
(a) (b)

>
© P>p
Fic. 1 (a) A buoyant fluid of density p; and viscosity p rises from
a point source through a crack in a solid of density p, and
elastic modulus m = G/(1—»); (b) A two-dimensional crack
rises in the x,z-plane from a linear source; (c¢) A fluid-filled
crack propagating at its neutral-buoyancy level, z = 0.

2. PRELIMINARY ANALYSIS OF FLUID-FRACTURE

Before deriving specific analytic solutions, we first discuss the
magnitudes of the various stresses which play a role in magma-fracture.
Secondly, we derive the equations that give the thickness and flow rate
in a fluid-filled crack in terms of the pressure distribution in the fluid.

2.1 Analysis of pressure scales and flow regimes

Consider a fluid-filled crack embedded in an infinite elastic solid.
Suppose that the solid has shear modulus G, Poisson’s ratio v, density
ps and stress-intensity factor (defined below) K and that the fluid is
incompressible and has dynamic viscosity p, density p; and prescribed
volume V(t). Let Ap = p, — py and m = G/(1 — v). For simplicity,
suppose that the crack lies in a vertical plane and define h to be the
vertical extent, b the horizontal extent and w the width of the crack.
It can easily be shown that w < b,h. Let u be a typical velocity
scale for the fluid flow and let [ denote the extent of the crack (either
b or h depending on the context). Where appropriate, we use the
parameter values m = 2 x 10'° Pa, K = 10° Pam¥/2, gy = 10? Pas
and Ap = 300 kg m™2 to ascertain whether a particular expression is
relevant in a geophysical setting. Injection rates dV/dt vary greatly
from O(1m?s~!) to O(10° m3s~1).

The relative magnitudes of four pressure scales control the regime
of erack propagation. These are (i) the pressure required to open the
crack against elastic forces
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(ii) the hydrostatic pressure due to the density difference

APy ~ gAph, (2)

(iii) the viscous pressure drop caused by flow in the crack
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and (iv) a crack-extension pressure defined by

K

AP, ~ e

(4)
This last pressure is that required for the stress intensity at the crack-
tip to have a material-dependent critical value K. If the stress intensity
were smaller than this value then the crack would not propagate.
Conversely, if it were maintained at a larger value then the crack
would propagate at about 40% of the speed of sound in the solid,
which is inconsistent with fracture driven by viscous flow into the
crack-tip. Conservation of fluid volume leads to the relations u ~ I/1,
hbw ~ V (3-D flows) and lw ~ V (2D flows), where { is the time
since the initiation of the crack. These relations, together with the
estimates (1)-(4) of the pressure scales, are sufficient to determine the
dimensions and rate of spread of a fluid-filled crack in the different
parameter regimes.

Suppose, first, that AP, is negligible in comparison with the other
pressure scales. The width of the crack is then given by one of two
possible balances: AP, ~ AP, or AP, ~ AP,. If AP, < AP, then
the resultant balance between (1) and (3) leads to
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V3mi 1/(3n+6)
(£
(5

where n = 0 for a two-dimensional crack and n = 1 for an axisymmetric
crack. The neglect of AP, is valid provided that
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This condition is easily satisfied in geophysical applications.

Secondly, if the crack is stationary or slowly moving then we may
neglect AP, and look for a balance between AP, and the sum of AP,
and an excess pressure APy in the fluid. These pressures cannot exceed
AP, since rapid crack propagation is inconsistent with the neglect of
AP,. From (1), (2) and (4) it follows that such a crack has a maximum
height and width given by

B R K M0
ho~ (‘GTP) = 50m, i r s (W) = 0.3 mm. (70‘5)

It is clear that such narrow cracks would be incapable of transporting
significant volumes of magma through the lithosphere.

From these arguments we see that AP. is negligible and AP,
provides the dominant resistance for the propagation of both vertical
and horizontal cracks in the lithosphere. It remains to determine the
dominant driving pressure. From (1) and (2) we find that AP, ~ AP,
when a2
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The vertical extent of feeder dykes through the lithosphere is such that
h? fw is likely to be greater than this value (e.g. A > 3 km, w < 1 m),
in which case we may neglect AP, and the dominant pressure balance
is between AP, and AP,. This balance is equivalent to that governing
the flow of a fluid down an inclined plane and, consequently, the
thickness of the crack is governed by the kinematic-wave equation
(Huppert 1982). If the rate of injection ) varies with time then
the thickness near the source varies according to w ~ (Qu/gAp)l/3
and these variations in thickness propagate away from the source at a
velocity gApw?/p; elastic effects are only significant near the crack-tip
where they play a role in the resolution of the leading kinematic shock-
wave. The solution for a two-dimensional crack fed by a constant flux
from a linear source is derived in §3.2.

If a crack rises from a localized source, it will tend to spread
laterally due to the variations in w and AP, in any horizontal cross-
section (cf. the downstream spreading of a gravity current on an
inclined plane due to cross-stream variations in its thickness). Two
pressure balances are possible for this spread: AP, ~ AP, or AP, ~
AP, Solutions for each of these balances are derived in §3.1 and it
is shown that, for geophysical parameters, the dominant horizontal
balance of pressures is between AP, and AP,.

4.6

An important consequence of the dominant vertical balance
between APy, and AP, is that lithospheric cracks have little tendency
to propagate through a level at which the density of the solid decreases
below that of the melt. If such a crack reaches the neutral-buoyancy
level of the melt then the crack will subsequently propagate along this
level. Solutions for this lateral flow are given in §4.

In conclusion, the resistance to fracture K is unimportant in
geophysical applications; thin fractures could propagate much faster
than magma would be able to intrude behind them. If the crack has a
sufficiently large vertical extent, as defined by (8), then the dominant
balance for the vertical motion is between AP, and AP,. If the crack
rises to a density interface at which the density difference between the
solid and fluid is reversed then further propagation will be lateral and
along the interface.

2.2 Theoretical resulls for thin cracks

We consider a crack of width 2w(z, z) lying in the plane y = 0
and derive the equations that govern the elastic and fluid-mechanical
responses to the fluid pressure p in the crack.

Let the crack be sufficiently narrow and the fluid sufficiently
viscous that prw[Vw.Vp|/u? < 1. It follows that the flow satisfies
the conditions of lubrication theory and that the variations in the
width of the crack are given by the averaged equation of continuity for
Poiseuille flow P

w

= Lo
T 3FV.(W Vp).

(9)

Now suppose that the crack is two-dimensional and has width
2w(s), where s may be either = or z. The assumption of two-
dimensionality is appropriate for a crack rising from a long, linear
source (see §3.2) or as a local approximation to the shape of a crack
with h 2> b (see §3.1) or b 3> h (see §4). The elastic pressure in the
plane y = 0 is given by

p=—mH(dw/ds),

where # denotes a Hilbert transform. Equation (10) may be inverted
to give

dw_L g ( o do
ds  mr Jy #@) so0—5
1 e

Lo
NG
fs? —o? deo ca
= E'/;“p(o‘) m:-'_\/s?——fsz (w#Ofor ‘sl(.‘;.)
(11a,b)
depending on whether the crack is semi-infinite or finite in extent. The

constants ¢; and ¢z are found from the boundary conditions that w is
finite as s — 0o and w = 0 at the edges of the crack.

(10)

(w#0 for s > 0)

3. VERTICAL PROPAGATION OF A BUOYANT CRACK

8.1 A Poini Source

Consider the release of an incompressible fluid of density py into
a crack in an infinite elastic solid of greater density p,. Suppose that
the rate of release is a constant Q. The fluid will rise, driven by
its buoyancy, thus causing a planar crack to propagate upwards. We
define the origin to be the point of release and take the z-direction to
be vertically upwards (figure 1a). Let the crack occupy |y| < w(z, z,1)
and let the edges of the crack be at @ = +b(z,1). We assume that
the crack has propagated a sufficient distance that the height h of the
crack satisfies b 3> b. As we noted earlier, b > w.

The fluid pressure is given by the sum of the buoyancy force and
the elastic pressure exerted by the solid. Since & 3 b, the crack may
be treated as being locally two-dimensional and the elastic pressure is
given by (10), where the Hilbert transform is taken with respect to z.
Thus the total pressure is given by

(12)

After the initial crack-propagation front has passed, the crack and the
fow will approach a steady state in which dw/df = 0 and the flux
through any cross-section is given by Q. Accordingly, we substitute
into (9) to obtain

dw
pr = —glpz — m’HE.
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We define similarity variables £ and W, where

3Qum3z2\ 10
z=by (%P)—‘) ¢ (14a)
3 a3 1l/10
w2y =B ({;Zf—A‘;),z) Wie) (14b)

and by is chosen so that W(%1) = 0. Equations (13) become

by = U_ll w3 d{)_lm. (15a,b)

We integrate (15a) twice and use W(£1) = 0 to obtain

(W3HW)") = L(ew?Y,

HW' = 262 4 ey, (16)
where ¢4 is a constant of integration. The Hilbert transform in (16)
may be inverted from tables of standard transforms or by substitution
into (11b). The resultant solution has a dimensionless stress intensity
of —e4 — {5 at £ = £1. As shown in §2, K is negligible in geophysical
problems. Therefore, ¢y = — % and

1/10
(2048000) (17a,b)
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The smooth closure of the crack at £ = +1 follows from the neglect
of the resistance of the medium to fracture. At very large values of
z, however, the cross-stream elastic pressures decrease sufficiently that
the resistance to fracture can no longer be neglected. For the regime
in which this resistance is dominant, we note that a vertical crack with
an elliptic cross-section satisfies the fluid and elastic equations exactly:
such a crack with cross-section 2?/b% + y?/w® = 1 is held open by a
constant internal pressure po = mw/ly, where Iy = b+ %w, and
contains a velocity distribution

Apgh*u? ( 22 2 )

S 2p(02 + w?) b2 w?
We equate the volume flux to @ and the stress intensity mw/léfn to
K, make the approximation w < b and deduce that
pe 22l " _ (4579 \° (184, b)
T \nK3Apg E W= Tm?Apg & ’

If we assume that the transition from negligible to dominant fracture
resistance occurs where the widths given by (14a) and (18a) are equal
then we conclude that equations (14) and (17) hold when

1/3 3
1 (21" mQu (19)
5w \ 32 K4

With geophysical parameters the transition height is 4 x 107Q m,
which, for reasonable values of @, is much greater than the thickness
of the lithosphere; hence, the lateral spread of dykes is given by (14a).

3.2 A Linear Source

Now suppose that the source is long in comparison to the scale
of the crack and that the rate of release per unit length is a constant
q. Consider, therefore, a two-dimensional crack propagating into a
uniform elastic solid (figure 1b). Let zy(f) be the location of the
crack-tip and w(z,t) the half-width of the crack. The flow in the crack
is driven by a total effective pressure

dw

7 (20)

pr = —gApz —mH
and the variation of w is given by (9). Since the flux into the crack is
constant, we seek travelling-wave solutions which propagate at some
fixed speed ¢. Far from the crack-tip w tends to a constant value, we,,
and the flux tends to g. We define s = ¢t — z, substitute into (9) and
integrate once to obtain

1/3
_ ( 3pe - & _ 3uc
wo(am) © cmm A=l @u-o

We non-dimensionalize w, s, p and K with respect to the scales
W = We, 8§ = (mwm/QAp)”z, P = mw/§ and & = ﬁS‘l"’z. fa
dimensionless variables we find that

(22)
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Fi1c. 2 The half-width w of a two-dimensional crack.

where the elastic pressure p is given by p' = pf. — 1. We integrate (11a)

by parts to obtain
w(s) = %'[om (o) ((5 —a)ln % - 2\/‘3-5) de. (23)

From (10) and (23) it may be shown that the requirement that the
stress intensity at s = 0 be equal to the critical value K leads to

{e ]
\/T-gf ey (0)de + K = 0.
o

Numerical solutions of (22)—(24) are found for all values of K and some
of the calculated crack widths are shown in figure 2. The solution
relevant to geophysical applications is for K = 0.

(24)

At the crack-tip w — 0 and from (22) p — —co. This behaviour
will be common to all solutions representing the extension of a fluid-
filled crack and is due to the large pressure gradients required to drive
a viscous liquid into a narrow gap. Vapour will be exsolved from
the fluid under such low pressures and, consequently, small volumes
of relatively inviscid volatiles will be present in the tips of extending
cracks. Solutions with exsolved volatiles are derived by Lister (1989a).

4. LATERAL PROPAGATION OF A NEUTRALLY
BUOYANT CRACK

In §3 we considered the vertical propagation of a fluid-filled crack
through a solid of greater density than the fluid. We now analyse
the lateral propagation of the crack for the case in which the solid is
horizontally stratified in density and the crack has risen to the neutral-
buoyancy level of the fluid. The distribution of stresses in the walls of
a fluid-filled crack is such that we expect the lateral propagation of the
crack along this level to continue in the vertical plane defined by the
rising feeder crack; this is in agreement with geological observations
(Rubin & Pollard 1987).

After a sufficient length of time the horizontal extent of the
laterally propagating crack will be much greater than the width of
the feeder crack. Thus we may consider a point source of fluid at
the origin of coordinates in which the plane of neutral buoyancy is
at z = 0 (figure Ic). Let the lateral crack occupy [y] < w(z,z,t) for
Fu(z,t) < z < hu(2,t) and —zx(t) < z < 2n(t) (with symmetry about
¢ = 0). We have zy > Iy, h, and, as usual, hr, by 3> w. Therefore,
the pressure in the fluid is given by the sum of the hydrostatic value
and a constant excess pressure; the width of the crack is given by (11b),
where the Hilbert transform is taken with respect to z. We suppose
that the crack is fed at such a rate that the total volume of fluid is
given by 2Qt*. Let the solid have density py in z > 0 and density p; in
z < 0 and, for simplicity, equal shear modulus and Poisson’s ratio in
the two regions. Stratifications in which the density varies away from
the neutral-buoyancy level according to a power law (e.g. 2 linear
gradient) may be also be analysed (Lister 1989b).

Motivated by the conclusions of §2, we suppose that the resistance
to fracture of the solid is very much less than the available hydrostatic
stresses. Therefore, i, hy and the excess pressure in the fluid will be
related in such a way that the stress intensities at the upper and lower
edges of the crack are both zero. If the excess pressure is too large
then the stress intensities will be positive, the vertical extent of the
crack will increase and the excess pressure will decrease. If the average
level of the crack is too low relative to the neutral-buoyancy level then
the stress intensity will be greater at the upper edge of the crack than
the lower and the crack will rise.

Let 0 = (o1 = py)/(p1 - pu) 30d T = (p; — pu) /(o1 — pu) = 1 - 6,
where py is the density of the fluid. Thus the difference between the
hydrostatic pressure in the fluid and in the solid is given by

P=polz) — B(p1 — pu)g2 (0<z<hy) (25a)
P=po(z) +0(p — pu)gz (h1<z<0) (25b)



where pp is the excess pressure in the fluid. The crack is held open by
this pressure difference and its width may be calculated from (11b).
We define a dimensionless pressure Py and width W by
= Po : W= mw L
60(p: — pu)gh 08(p1 — pu)gh?

Let h(z,t) = hy—h; be the total height of the crack, ¢ = z/h, ¢ = hi/h
and ¢, = hy/h. The unknowns Py, (;, {, and W are found by solving
the problem consisting of equation (10), the equation ¢, — ¢ = 1 and
the requirements of zero stress intensity at both edges of the crack.
Since this problem is independent of z, the solutions depend only on
the parameter 8, that is Py, ¢; and ¢, are constants and W is a function
of (. The calculation of these constants and of W((;#) is described by
Lister (1989b); solutions for W are shown in figure 3. We take W to
be known and calculate the variation of h with z.

Py (26a,b)

W
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Fic. 3 The half-width W of a fluid-filled-crack at the density step
¢ =0 in a stratified solid, where & = (p — ps)/(p1 — pu)-
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FiG. 4 The height H of a crack of volume Qt* propagating at a
density step as a function of lateral position £.

The lateral variations in the pressure given by (25) drive a flow in
the crack. We integrate (9) with respect to z and substitute from (25)

and (26) to obtain
TBh)
(h 8z )’

e _ BP0 — pu)g)’ &
- 3um? Oz

where ;(0) = 2 [* Wi(¢)d(. The problem is completed by the

equation of global conservation of volume

1L68(p — pu)g /’” hdz = Qi
m o - %

7. (27a)

Vot

(276)

We observe that equations (27) have a similarity solution and that
any solution with sufficiently smooth initial conditions will tend to this
similarity form. We define similarity variables £ and H by

LR S 155043\ /1
e (faPo(W(m pu)g) Q% ) £ (280)

2T uEm

3um’ Qo1
LIsPo(68(pi — pu)g)’

where ry is chosen so that H(1) = 0. Equations (27) become

1 ~5/11
S endy < (uTHY, 6w = (] H? df) :
0
(29a, b)
Numerical solutions of (29a) are shown in figure 4. In the interesting
case of a fixed-volume release (o = 0) we can integrate (29) analytically
to obtain the exact solution

24y 15 N rrasys)\ M
-, fn-—(%> (W/ﬂ) . (30a,b)

/1
h(z,t) = &51° ( ) H(E),  (280)
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6. DISCUSSION

We have provided a physical understanding of the forces that
govern the rise of magma through the Earth’s lithosphere and its
subsequent emplacement near the surface at the neutral-buoyancy
level of the magma. Analytic solutions have been derived to model
each of these vertical and lateral stages of magma-transport. These
solutions have been evaluated for typical geophysical parameters by
Lister (1989a, b). The predicted values of w, b, h and zx are in broad
agreement with geological observations. The sizes of the leading elastic
shock and of the volatile-filled tip are found to be small in comparison
to the scale of the dyke and have no dynamical effect. Detailed
application of our results to the emplacement of dykes, however, may
require our solutions for the fluid motion and elastic deformation to
be coupled to the thermal problem of heat transfer from the magma
to the colder country rock (Bruce & Huppert 1989).

Interesting parallels exist between the solutions of §§3 and 4 and
those for viscous gravity currents down a sloping plane (Smith 1973;
Huppert 1982) and at an interface (Lister & Kerr 1989). The dominant
downstream balance between buoyancy forces and the viscous pressure
drop in a thin layer is common to all these problems. Analogies
may be drawn between the elastic shock at the tip of a propagating
crack and the surface-tension dominated region at the front of a
gravity current, between the critical stress-intensity at which a crack-
tip will propagate and the critical contact angle at which a contact-line
will move and between cross-stream spreading due to elastic and to"
hydrostatic pressures caused by variations in the thickness of the flow.
Such analogies are, of course, qualitative rather than quantitative but
they are useful aids when considering the behaviour of propagating
cracks.

To sum up, we have analysed the balance of forces in a propagating
fluid-filled crack and derived solutions to the governing equations in
three model geometries. These solutions increase our understanding
of the dynamics of dyke emplacement and, hence, of the origins of
the igneous intrusions that contain many of the world’s valuable ore
deposits.
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