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ABSTRACT

Analytical expressions are derived for the Reynolds shear
stress profiles in zero pressure gradient boundary layers.
Some of the properties of these profiles have been discussed
and comparisons are made with hot-wire data.

1. INTRODUCTION

There has always been the need for some reliable analytical
expressions of Reynolds shear stress profiles in turbulent
boundary layers. Such expressions could be used for the
study of conditions necessary for equilibrium flows, for the
checking of hot-wire anemometer measurements and for cross
checking the skin friction estimation made by other methods,
particularly on rough walls. Analytical expressions could
guide us in developing a procedure for extrapolating measured
shear stress data to the wall. In this paper, Coles' velocity

profile (1956, 1962 and 1969) has been modified to apply to

the whole boundary layer beyond the buffer zone. The
analytical expressions for the Reynolds shear stress profiles in
smooth and rough wall zero pressure gradient turbulent
boundary layers are then derived. Many people have
attempted a similar task, among them, Coles (1952), Tetervin
& Lin (1955), Townsend (1956), Coles (1957) and Rotta
(1962), all with some simplifying assumptions. Perry (1968)
presented a detailed analysis of the shear stress profiles using
the law of the wall and the one parameter velocity defect
profile family. Some of the results concerning the zero
pressure gradient flows on both the smooth and 'd-type' rough
walls have been given in Li, Henbest & Perry (1986).
Granville (1988) also derived the shear stress profiles for
smooth and rough walls in zero pressure gradient flows using
a different strategy, but his analysis cannot be applied to the
'd-type' rough wall. The analytical results are then compared
with the experimental results and show good agreement.
Some of the discrepancies have been explained. Similar work
has also been done by the authors on arbitrary pressure
gradient boundary layers and the results will be published
later.

Coles' velocity formula (1956, 1962 and 1969) on smooth
walls
UE = l_an_U"+A+Ew(.£) (1)
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is assumed throughout this paper. Here U is the local mean
streamwise velocity, Uz the wall shear velocity, z the distance

from the wall, x the Karman constant, v the kinematic
viscosity, A a universal constant, IT the wake strength, w(z/3;)
the wake function and 8. is Coles' boundary layer thickness.

2. MODIFICATION OF COLES®' FORMULA
Hinze (1959) suggested the functional form for w(z/8.) in
equation (1) as,

w(ai) = 1-cos(n=) @).
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It is a well known fact that the velocity derivative dU/0z of
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Coles' velocity profiles (1) and (2) is not zero at z = §.. In
order to overcome this problem, a factor P is introduced into
equation (2) and the velocity profile beyond the buffer zone is,
U 1. zU; 11 z
T = xln ” +A+K(1-ms([31ta)) 3)
Here 8y = 8*U1/C;U,; where 8* is the displacement thickness,
Uj the freestream velocity and C; is a constant which will be
defined later (after equ. 14). The factor B is found from,
1+NOBrasinBr) = 0 (4).
It can be seen thatp — 1 asIT — coand B = 1.1654 at 1=

(.55, which is the value suggested by Coles as the asymptotic
value when the Reynolds number is above Rg = 6000. The

geometric meaning of B is 8y = B 8. and the defect law after
inserting the factor P in is,

U, -U
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T

= - 1;1:1(;—}1) + %(-cos(ﬁn) + cos(Bn;—H)) (5).

3. SHEAR STRESS PROFILES ON ZERO PRESSURE
GRADIENT SMOOTH WALLS

Figure 1 shows the various definitions of the quantities
used below. It is assumed that the velocity profile in a
boundary layer can be described by a viscous zone and an
outer flow region. In the viscous zone, it is assumed that:

U
U = fs(ﬁ) (6)

where & = z/zy, zg = Mv/Uy and M is a constant around 50
for smooth wall turbulent boundary layers.
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Figure 1 The various definitions used in boundary layer.




In the outer flow region the velocity profile is given as,
Uy -
=2 - . )
T
where T = z/8. Using the boundary layer approximation and
assuming two-dimensional flow, the mean momentum and
continuity equations are,
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where T/p =V dU/dz- uw is the total shear stress and - uw
is the Reynolds shear stress. The boundary conditions are,
U=W=20 1= 1 a2z =0 (10a)
U="U, =0 at z = 8y (10b).

The normal to the wall mean velocity W can be found from
equation (9). Substituting W and the velocity profile (7) into
equation (8) gives,

(%)'laﬂ = -oDf+onf +OR+Dnof(l)
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where G_U-;’q) e (Sde) ,fr =0affon and g =
zo/Oy. After substituting the boundary condition U=Uj atz =
8y, equation (3) becomes,
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By differentiating equation (12), @ can be obtained as,
o = -

(13).
Ko + 1

Using the definition for the momentum thickness 8, it can be

shown that:

8.6 G (14)
G
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where C; = U[fdn and C; = szdn. In deriving equation (14),
the velocity defect profile (7) has been used and the sublayer
effect has been neglected according to Perry (1968).

Combining the momentum integral equation d8/dx = 1/06? and
equations (13) & (14), it can be shown that,

sy _ Ko + 1

= (15).
dx k62C; - k6Cq + Ca

Substituting equations (13) and (15), after integration and
using the boundary condition (10), equation (11) becomes,

E o in £1D (16)
Ty KG2C - koCa + Cy
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where C = xonf- KGZU[ fdn +onf- U[fzdn
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andI;:den, 12=Jf2dn and fy = fmo, D).

The term D in equation (16) represents a correction from the
viscous sublayer effect, Perry (1968) has shown that this

correction can be neglected for ¢ = O(10).

There are some interesting features concerning equation
(16). Firstly, as Rotta (1962) has pointed out, the shear stress
profile is not universal although a universal velocity defect law
is used in deriving equation (16). From dimensional analysis,
combined with the momentum equation, Rotta concluded that
equilibrium of the turbulent boundary layer on a flat plate can

be reconciled with the flow equations only if ¢ =V2/C;' is a
constant and this would be achieved if the plate were covered
with a 'k-type' roughness distribution continuously varying in
such a manner that the representative length scale of the
roughness is everywhere in constant ratio to the distance x

from the leading edge. Secondly, since & approaches infinity
as the Reynolds number approaches infinity, the above
expression for shear stress can be simplified for infinite
Reynolds number as,

ul
P i (a7

which is a universal function of . Note also that the shear
stress gradient in the turbulent wall region is not zero when the
Reynolds number approaches infinity but is given by,
a1ty 1

an xCy
Thus according to equations (17) and (18), the turbulent wall
region is not a region of constant shear stress. Equation (18)
was first given by Perry (1968) and first stated in the open
literature by Li et al. (1986). Spalart (1988) independently
arrived at the same result.

Another interesting point about equation (16) is the slope of
the shear stress in the turbulent wall region at low Reynolds
numbers. It was generally believed that this slope should be
zero, but calculations using equation (16) show that it is finite.
Spalart (1988), by using a supercomputer, has carried out a
full direct simulation of a flat plate turbulent boundary layer
and found that from Rg = 667 to 1410, the total shear stress
profiles have finite slopes in the turbulent wall region. This is
consistent with the present analysis.

The Reynolds shear stress after taking into account direct
viscous effect is calculated as follows,

(18).

- uw o l i _1_8'[_]/{_]',:
b (19)

where K. = U;dy/v and will be referred to as the Kirmdn
number.

Figure 2 shows the calculated Reynolds shear stress
profiles using equations (19) and (16) for various Reynolds
numbers, with the velocity profile (5) being used. Figure 2
shows that the maximum value for Reynolds shear stress at Rg
= 103 is about 0.9. This agrees well with the supercomputer
results of Spalart (1988) and the experimental data of Erm,

Smits & Joubert (1986). In the near wall region, the Reynolds
shear stresses approach the universal profile (17)
monotonically as the Reynolds number increases. At very high
Reynolds number, the Reynolds shear stress approaches 1

close to the wall. However, at z/8y =0.1, the highest
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Figure 2 The Reynolds shear stress profiles on smooth wall
calculated from equations (16) and (19) with P values chosen
according to Coles (1962).
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attainable Reynolds shear stress is about 0.95 rather than the
generally believed value of 1.

4. SHEAR STRESS PROFILES ON ZERO PRESSURE

GRADIENT ROUGH WALLS

The general velocity profile expression on rough walls is,
F o= L@y a- 82 00 cos@rmy 20)
U = Ue "k

where AU/Uy is the roughness function and is a function of
hUy/v. Here h is the effective roughness scale.

Experimental data have shown that when hUg/v is
sufficiently large, AU/U: itself is a logarithmic function of

hUq/v. Perry, Schofield & Joubert (1969) have pointed out
that there are two kinds of rough walls. One is called the 'k-
type' rough wall and the other the 'd-type' rough wall. On 'k-
type' rough walls,

T = in¥% g @1)
T K v

where the effective roughness scale h is proportional to the
length scale of the roughness element k and K is a
characteristic constant of roughness. On 'd-type' rough walls,

%[-:l = 1—In5—HI-J—T +
where the effective roughness scale h is proportional to the
boundary layer thickness 8y and D is a characteristic constant
of roughness. On rough walls, we assume that the defect law
formula (7) is valid down to the crests of the roughness
elements and 1 = ¢/8y corresponds to the roughness element
crests.

D (22)

4.1 'k-type' Rough Wall
The procedure of deriving the shear stress profiles on rou gh
walls is the same as on smooth walls. It can be shown that,

ddy . . 19t/1g

(=) = -c®f+onf'+Of2
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Using equations (20) and (21), after substituting z = 8y, one

obtains,

® = -1 (24)
KO

for 'k-type' rough walls. By integrating (23) and using the

boundary condition (10), one has,

where E = KO’Z(Cl -I])-O’(Cl-lx)-i—Z(Cz-Iz)
-k 0 (C; - ) + xonefy (o - fy).

The shear stress profile after integrating equation (23) is,

T F
- = l+g% (26)
To E
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n n
—xcngfo(f-fo)+f(de'r| -Il)-Z(szdn -

ul n
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Asdyfk — e, = 0andI; =1, =0, expression (26) is the
same as equation (17).
4.2 'd-type' Rough Wall

For 'd-type’ rough wall, the analysis will be simpler since
© =constant according to Perry ef al. (1969). The expression
for d(t/tg)/an will be the same as equation (23) and from

equations (20) and (22), it can be shown that,

® =0 27
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where H=oC;-C2+c’qofo-cI1-nof% +Ip. The shear

stress profile is,

i M
— = 1+= 29
= =i (29)
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where M = c(nf-u[fdn)—no fof -(fden -Jﬂdﬂ)
- o(ofo - I1) + Mo i + (T, - ).

Because G = const. on 'd-type' rough walls, the expression
(29) is self-preserving and therefore we have equilibrium

flow. For small g and large o, equation (29) reduces to the
universal equilibrium form as given by equation (17).

5. THE EXPERIMENTAL REYNOLDS SHEAR STRESS
RESULTS

5.1 Smooth Wall Results

In all the experimental boundary layers mentioned here,
great care was taken to ensure minimum three dimensionality
of the mean flows. Spanwise distributions of V were found
to be small confirming the absence of secondary flow. The
Reynolds shear stresses on smooth walls were measured using
a 900 stationary X-wire. The measured Reynolds shear
stresses are non-dimensionalized using the U2 values obtained
from the Preston tube method and are shown in figure 3. Also
shown in the figure are the calculated Reynolds shear stress
profiles according to equations (16) and (19) for the
corresponding lowest and highest Reynolds numbers as well
as the infinite Reynolds number case. The wake strength
parameters for calculating the profiles were chosen according
to the mean flow results at finite Reynolds numbers and is
0.55 at infinite Reynolds number.

Figure 3 shows that the experimental results agree
reasonably well with the calculated results except in the near
wall region. One of the reasons for this discrepancy might be
due to the velocity gradient along the wires as suggested by
Lawn (1971). Another possibility is due to the spatial
resolution effect. The data from Ligrani, Westphal & Lemos
(1987) using a subminiature hot-wire probe together with a
standard size probe clearly show that spatial resolution has an
effect on the streamwise, the normal to the wall broadband
turbulent intensities and the Reynolds shear stress.
Unfortunately, we do not know how to correct this spatial
resolution effect for Reynolds shear stress so far. Due to the
present experimental errors involved, it is felt that the
agreement between the experimental and the calculated
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Figure 3 The measured Reynolds shear stress results on
smooth wall.
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Reynolds shear stress results shown in figure 3 is acceptable.

5.2 Rough Wall Results

Figure 4 shows the measured Reynolds shear stress results
for the 'k-type' rough wall and the corresponding calculation
from the above theory. The experimental results were non-
dimensionalized by the U2 values obtained from the method
outlined in Li (1989).

As discovered by Perry, Lim, Henbest & Chong (1983), a
stationary 900 X-wire probe will suffer a 'cone angle’
problem over the 'k-type' rough wall and the way to overcome
this is by either 'flying' the wire and/or using a 1200 X-wire
probe. Figure 4 shows that the 120° wire probe and the
flying' wires improve the Reynolds shear stress results for
the 'k-type' rough wall and agree with each other quite well.
Figure 4 also shows that the present ‘flying' hot-wire and 1200
X-wire results agree very well with the theoretically calculated
ones for 'k-type' rough wall.

QOver the 'd-type' rough wall, it is known from Perry er al.
(1969) that a 'precise’ equilibrium layer exists and the
momentum thickness 0 increases linearly from some starting
position. Thus the wall shear stress can be derived from
d6/dx without suffering serious discrete point differentiation
inaccuracies. This might be true when the Reynolds number is
high. In the present 'd-type' rough wall experiment, since the
Reynolds number is low, the extrapolation method of inferring
wall shear stress using the Reynolds shear stress profile (Li et
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Figure 4 The measured Reynolds shear stress results on 'k-
type' rough wall.
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Figure 5 The measured Reynolds shear stress results on 'd-
type' rough wall.

al., 1986) is used to obtain the Uy values instead of the d6/dx
method. Figure 5 shows the Reynolds shear stress results
measured over the 'd-type’ rough wall using the 900 station

X-wire and non-dimensionalized using U.? values obtained by
the extrapolation method. The Uy values obtained this way are

between the values obtained using the d6/dx method and the
mean velocity similarity method mentioned in Li (1989) and is
less than 3% different from the U, values obtained by both
methods.

6. CONCLUSIONS AND DISCUSSION

Coles' velocity profile (1956, 1962 and 1969) has been
modified and applied to the whole boundary layer beyond the
viscous sublayer. The derived shear stress profiles in zero
pressure gradient turbulent boundary layers show the .
Reynolds number effect as mentioned by Townsend (1956)
and Rotta (1962), i.e. a universal shear stress profiles can be
achieved only when the Reynolds number approaches infinity.
This universal shear stress profile has been discussed by Perry
(1968) and shows a striking feature in that its slope is finite in
the turbulent wall region. The general analytical Reynolds
shear stress profiles have been compared with the experimental
data and encouraging agreement has been found. Further
work is needed to investigate the discrepancy between the
theoretical results and the experimental ones on the smooth
wall. Although many people belive that spatial resolution
should not be a problem for the Reynolds shear stress, the
recent investigation by Ligrani er al. (1987) has shown that
this may not be true. Hence some method is needed to correct
this effect.

The authors wish to thank the Australian Research Council
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