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ABSTRACT

A methodology for simulation of three-dimensional
flow in the combustion chamber of a spark ignition
engine is described. The methodology is based on a
higher order vortex method which uses an explicit
velocity kernel for the solution of the flow
field. A three-dimensional random walk method is
used for simulating the diffusion of vorticity.
The methodologies wused for satisfying the
potential and the no-slip boundary conditions are
also described.

INTRODUCTION

The processes taking place within the combustion
chamber of an engine can be described as a complex
interaction of the fluid-dynamic, thermal and
reaction kinetic phenomena. A complete
understanding of these phenomena and their
interaction is crucial to developing engine
designs for optimzing engine combustion and hence
performance and emission characteristics. The flow
field established in the combustion chamber is the
result of this complicated interaction and is
turbulent, unsteady and 3-dimensional in nature.
Therefore validated mathematical modeling of this
flow field is needed to enhance our understanding
of the engine combustion and to improve the design
of modern engines.

Traditional analyses of flow fields in the engine
cylinder have been based on some form of
finite-difference treatment of the appropriately
averaged Navier-Stokes equation. Such averaging
also necessitates an adequate set of relations
known as a closure model or a turbulence model to
correlate the turbulent flow parameters. However,
such differencing methods suffer from several
drawbacks which include the necessity of
introducing turbulence models on heuristic grounds
rather than obtaining information about them from
the solution, and numerical diffusion which tends
to smooth out the local perturbations. Many of
these drawbacks are overcome by the Random Vortex
Method due to Chorin (1973) which is essentially a
grid free method and relies on mimicking the
essential features of the flow field. However, it
is limited to the 2-dimensional flow field.
Generalization to three dimensions is possible by
assuming the vorticity field to be represented by
a collection of tubes or filaments as reported by
Leonard (1980). In all these methods the vorticity
is distributed over a finite region, variously
known as vortex blob, vortex filament or vortex
tube -etc. The necessity to introduce these
structures arises from the earlier observations
that point vortices will allow arbitrarily large
velocities.

Recently a complete rigorous theory accounting for

the accuracy, non-linear stability, and
convergence of vortex methods in 3-dimensions has
been developed by Beale and Majda (1982) and
Anderson and Greengard(1985). It is possible to
avoid the singularity at the point vortices by
proper choice of the velocity kernmels and these
provide higher order accuracy compared to the
previous vortex methods. Our simulation
methodology is based on the above concept.

MATHEMATICAL MODEL

The continuity and the momentum equations can be
written as follows:
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where p is the demnsity, U is the velocity vector,
f is the energy potential, P is the pressure and f
is the viscosity.

Following assumptions are made:

1. The Mach number of the flow in the engine is
quite small, so the compressibility effects can be
ignored.

2. The fluid is barotropic i.e. the density is a
single valued function of the pressure.

With the use of the above assumptions the model
equations can be simplified and written as
follows:
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where « = VxU is the vorticity vector and v is the
kinematic viscosity.

The above two equations can be seen as
simultaneous convection and diffusion of
vorticity. The solution algorithm adopted is the
fractional step method, which simulates the
convection and the diffusion processes
sequentially rather than simultaneously, with the
expectation that the error in so doing will
converge to zero as the time step approaches zero.
Next we describe the methodology adopted for the
solution of each of the two components, namely the
convection process and the diffusion process.



OONVECTION

The equation to be solved is the following:
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The Lagrangian algorithm used for the solution is

due to Beale and Majda (1985) and is presented
below.
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where x is the position vector and h is the
initial mesh width and i and j refer to two points
in the mesh. KJ is a smooth kernel and is defined

as convolution of the velocity kernel K and a
smooth function ﬁé as follows:

K6=K*#5 (8)

The functions ¥ and ﬁﬁ are defined as follows:

3 x
#:R°— R, Ys00= ¥ (9

where ¢ is a smoothing parameter. The scalar
function ¢ satisfies the conditions given by
Anderson and Greengard (1985). These conditions
decide the accuracy and the stability of the
vortex method. The smoothing scalar function ﬁJ is

often called the cutoff function, smoothing
function, blob function or core function in the
literature. It may be noted that the velocity
kernel K arises in the vortex method due to the
following convolution:

U(x, £)=(K*&) (x, t) (10)

The smoothing of the kernel K by the function $5

can be interpreted as the approximation of the
vorticity distribution by a sum of blobs of
Prescribed shape as described by Hald (1979).

Following Beale and Majda (1985) we use fourth
order accurate and explicit functions ﬁé and Ké as

follows:
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where r is the distance between two points. The
smoothing parameter 4§ is chosen as follows:
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Since the velocity kernel given by equation (12)
is an explicit kernel, the Laplacian operator in
equation (7) can be evaluated explicitly. Thus
solution of the convection problem is achieved by
solving equations (6) and (7).

DIFFUSION

The equation to be solved is the following:
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This equation also must be solved in the
Lagrangian framework in order that it is
compatible with the convection problem. The

solution of this equation is given by the
3-dimensional Green's function as follows:
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The above equation can be seen as product of three
one-dimensional Green functions. Furthermore,
consider the following probability density
function P of a Gaussian variable 7 with a zero
mean and a standard deviation 7:
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Now, let ¢ = /2vt . It can be easily seen that the
following holds:
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Thus the solution of equation (14) can be achieved
by three dimensional displacement of vorticity in
three perpendicular directions using a set of
three Gaussian random numbers, each having a zero

mean and a standard deviation ¢ = 2rt . This
displacement is akin to the Random Walk method of
Chorin (1978) and is added to the the convective
motion calculated from the solution of the
caonvection problem. Next we describe the boundary
conditions which the flow must satisfy.

NO-LEAK BOUNDARY CONDITION

The relative fluid velocity at the boundary must
not have a component normal to the wall, as this
would imply the fluid is leaking from the surface.
This leads to the following Newmann boundary value
problem:
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where Ure is the fluid velocity at the boundary
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relative to the velocity of the boundary, n is the
unit outward normal at the boundary, and the
potential ¢ is governed by the following equation:

V2¢=0 (18)

The methodology for the solution of the above
equation is described in detail by Hess and Smith
(1962) and consists of describing ¢ as the
potential of a source density distribution JA(p)
over the surface which leads to the Fredholm
integral equation of the second kind over the body
surface as follows:
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where p and q are two points on the body surface S
and r is the distance between the two points. The
piston, the cylinder and the cylinder head
surfaces are approximated by several triangular



alements as shown in figure 1 and this
gpproximation is used to discretize the integral
equation to arrive at the following system of
linear algebraic equations:
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where N is the number of triangular elements, Aij
is the normal velocity induced at the control
point of the ith element due to the unit source

density at the control point of the jth element.

Figure 1 Approximation of the surfaces

triangular elements.

using

The control point is chosen to be the same as the
centroid of the triangular element. The set of
equations represented by equation (20) is fairly
large depending on the number of elements and thus
the surface detail represented. An iterative
technique using the conjugate gradient method is
employed to solve the set of equations. The
algorithm is completely vectorizable and typically
for 1600 elements the solution requires about 20
minutes of Cyber 180 model 990 processor time.

NO-SLIP BOUNDARY CONDITION

In a real flow, the velocity of the fluid at solid
boundaries must remain the same as the velocity of
the boundary. Any slip velocity at the boundary is
annihilated and vorticity is produced. Thus the
solid boundaries act as a source of vorticity in
the flow which then diffuses away from the
boundary into the interior flow. Many researchers
have used a method similar to that of Chorin
(1978), which uses the approximate 2-dimensional

boundary layer equations to generate vortex
sheets, which then are split up into various
elements. In our methodology, we use the Stokes

theorem for each of the triangular elements to
generate the vorticity at the control point of
that element. This is done as follows:

1. Since the no-leak condition is satisfied at the
control point of each element, the velocity at
that point must be in the plane of the element.

Thus the global x-y-z axes are transformed to the
» *
local t1-t2-n axes, where t1 and t2 are two

perpendicular unit vectors in the plane of the

»
element and n is the unit outward normal vector to
that element.

2. In the local co-ordinate system, the vorticity
»
can be in the direction of n only, in other words,

g
the vorticity cannot have components in the t1 and

+
t2 directions.

3. It is assumed that the slip velocities in the
5

+
t1 and t2

point of each of the elements,
that element.

directions, calculated at the control

are uniform over

4. The generated vorticity is
control point of that element.

assigned to the

Now the generated vorticity can be calculated from
the application of Stokes theorem to the element
as follows:
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where En is the vorticity generated per unit area

(21)
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in the direction of the unit outward normal n and
»

is the slip velocity in the local

Uslip

coordinates. En is transformed to the global x-y-z

coordinate system to obtain the three components
of the generated vorticity. This vorticity becomes
part of the flow and diffuses away from the
surface into the interior flow.

COMPUTATIONAL SCHEME

The computations start at the crank angle
corresponding to the closed inlet valve. The
initial velocity distribution is assumed known
from measurements at this crank angle, at all of

the points in the uniform starting mesh shown in
figure 2. This mesh is used for placement of
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Figure 2 Initial mesh for placement of particles

initial vorticities as well, by differentiating
the initial velocity distribution. The computation
proceeds in the same sequence as the steps are
described in the paper. Each c¢omputational module
has been developed and tested separately. The
programming language used is vector Fortran and



are is taken to vectorize the code to the optimum

extent. The code has been developed for Cyber 180
model 990 computer. It is expected that we produce
preliminary results of our computations at the
paper presentation.

CONCLUSIONS

A higher order vortex method using an explicit
velocity kernel is adopted for the simulation of
the flow field in an spark ignition engine. The
solution of the 3-dimensional Navier-Stokes
equation in vorticity form is achieved using a
fractional step method, whereby the convection and
the diffusion Processes are simulated
sequentially. The potential boundary condition is
satisfied by the solution of the Poisson's
equation. The no-slip boundary condition is
satisfied by the application of Stoke's theorem,
which is used to generate appropriate amount of
vorticity at the boundary.
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