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ABSTRACT

Measurements have been made in a swirling turbulent boundary
layer affected by the angular momentum instability. The flow
field seen by a rotating observer was obtained from a fixed
hot-wire probe using the technique of phase-locked averaging.
The instability is localised to the wall region of the boundary
layer and there is some évidence that it has produced
"streamwise" vortices analogous to the Taylor-Gortler vortices
in a boundary layer on a concave wall. The mean velocities and
Reynolds stresses show a significant phase dependence which
appears to originate in the swirl generator. The conventional
Reynolds stresses are not equally affected by the phase
dependence and this has implications for the turbulence
modelling of swirling flows.

1. INTRODUCTION

It is well known that an inviscid instability occurs in any curved
flow where the angular momentum decreases away from the
centre of curvature, eg Townsend (1976). An important and
much studied example is the nominally two-dimensional (2-D)
boundary layer on a concave wall where the instability results
from the no-slip condition. In laminar flow, this leads to the
formation of longitudinal Taylor-Gortler vortices with a
spanwise wavelength of about twice the boundary layer

thickness, 8. Each wavelength contains two counter-rotating
vortices. Because the instability is inviscid, it is generally
supposed that the same happens in turbulent flow where
spanwise variations have been found in the easily-measured
surface shear stress, eg Hoffmann er al. (1985). The
variations depend on upstream conditions, and have a
peak-to-peak value of 10 - 20% of the average with a spanwise

"wavelength" of about 28. They have even been found in the
boundary layer on the flat walls of a working section
downstream of a contraction, which necessarily contains a
concave wall, Mehta & Hoffmann (1987).

If the flow is axisymmetric and swirling, the angular momentum
vector usually lies in the axial direction, but this should not
change the basic instability. However, a new complication is
possible: the conventional, time-averaged measurements from a
fixed probe may be circumferentially uniform, but similar
measurements from a probe rotating with the flow may not.
Furthermore, the non-uniformity could be associated with a
rotating system of "longitudinal” vortices. This possibility can
be examined by sampling a fixed probe on the basis of 8, the
'phase’ angle between the probe and some arbitrary, but rotating

point in the flow. (The symbol 6, is used to distinguish the

phase angle from the circumferential co-ordinate 6 used often
for axisymmetric flows.) Ensemble averages for constant 8

are called phase-locked averages (PLA) by Gostelow (1977).
They are taken routinely in studies of turbomachinery, eg
Laksminarayana (1981), but not, as far as we are aware, in
swirling flows. PLA measurements for a range of 0, should

provide information similar to conventional measurements in the
nominally two-dimensional flows cited above.

T8

The present experimental apparatus, consisting of a wind tunnel
and swirl generator, Fig. 1, is similar to that used by Jacquin et
al. (1987) to study the effects of rotation on homogeneous
turbulence, and by Hagiwara et al. (1986) who were primarily
interested in the subsequent diffusion of the swirling flow.
Measurements made in a diffuser attached to the present swirl
generator were reported by Clausen & Wood (1987). The
boundary layer on the wall of the swirl generator becomes
susceptible to the instability when it encounters the downstream
stationary section. There are many similarities to the external
flow over an axially-aligned cylinder, when the upstream part of
the cylinder is spinning, eg Driver & Hebbar (1987) and
references therein. This, and other flows, such as the swirling
annular flow of Yowakim & Kind (1988) may well be affected
by the angular momentum instability, but, we repeat, the
possibility does not appear to have been investigated.

The first major aim of the present experiment is the obvious one
of determining the phase-dependent axial vorticity in the
unstable boundary layer. Unfortunately, no similar
measurements are available for the nominally two-dimensional
flows mentioned above, perhaps because of the large amount of
extra traversing that would have been required; of course, this is
replaced by the much easier PLA for swirling=flows. There is
also some doubt as to whether clearly defined vorticity contours
could be obtained, for the reasons given by Baskaran &
Bradshaw (1988) and there are flows where weak longitudinal
vorticity is accompanied by large cross-stream changes in the
turbulence structure, eg Hooper & Wood (1984). Therefore it is
possible that eny phase-dependence will modify the turbulence
structure. In addressing this possibility we restrict attention to
the conventional Reynolds stresses, which will be modified if a
conventional mean velocity, G say, differs from the PLA mean

velocity at any 0. Let this difference be g(8,) and let g(0,, t)
be the time-dependent fluctuation about G + g(0,). Then the

total instantaneous velocity is G + g(84) + g(04, t). For the

conventional (fixed point) Reynolds decomposition, let g be the
time-dependent fluctuation about G, so that the total
instantaneous velocity is G + g. Now introduce another
velocity component with F and f defined analogously to G and
g. Since

F=g =100 =g00 =<f0)>=<g®:)>=0

it is easy to show that a conventional Reynolds stress, fg, is
related to the average of the phase-dependent stress by
fzg =

<f( B4, 1) 8( B4, ) > + <F(04) (04) > n

The overbar denotes ensemble averaging. The "< >" brackets

indicate a phase average over the range 0° <0 < 360°. The last
term in equn (1) contains only mean-velocity terms, and so will
be called the "phase-dependent mean" term. The second major
aim of this work is to determine its effect on the conventional
stresses.

Any phase-dependence of the stresses can have significant
implications for computational models of swirling flow. For




example, the turbulence energy, k, may be affected differently
from the shear stresses. If the two are related, such as by an
eddy viscosity in the modelled Reynolds-stress equations, then
the relationship may need to depend on the way the
phase-dependence is established.

The next section describes the experiment and the measurement
techniques and is followed by the Results and Discussion. The
two major aims of this work will be addressed together rather
than in the sequence implied in this Introduction. The last
Section contains the major conclusions.

2. EXPERIMENT AND MEASUREMENT TECHNIQUES

The swirl generator is shown in Fig. 1. A 20 mm length of
aluminium honeycomb was placed at the start of the rotating
section. The cell diameter was 3.2 mm and the wall was 0.025
mm- thick, giving an open area ratio of close to 0.97. The
downstream flow consisted of nearly-solid-body rotation about
the centreline at 130 mm, with a reasonably uniform axial

profile outside the boundary layer whose thickness, &, was 20

mm; 8 was determined as the distance to where U was 0.99% of
the average axial velocity U,. These measurements, and the
boundary layer results given below were obtained 75 mm
downstream of the end of the rotating section. Partly to thicken
the boundary layer, and partly to hold the honeycomb in place,
Dymo tape was attached to the pipe wall. The tape was
inscribed with an endless succesion of (capital) "V"s. The
major dimensions of the swirl generator are given in Fig. 1.

No screens were placed downstream of the honeycomb. U

was 12.4 m/s, and the rotational speed of the swirl generator,
Q, was 57.6 rad/s (550 rpm) .

Most measurements were obtained using a DISA 55P51

X-probe with home-made 5 um tungsten wires, whose active
portion of 1.2 mm was isolated from the prongs by copper

plated stubs of 20 um diameter. The probe was operated by
constant temperature anemometers similar to those described by
Miller er al. (1987) and was calibrated for velocity and yaw
using the technique developed by Clausen and Wood (1989).
The total anemometer voltages were acquired digitally using the
system described by Clausen (1988). Subsequently, the King's
law calibrations were digitally inverted, so no linearisation was
necessary. Measurements were obtained at each radius after

rotating the probe into the flow by approximately B =
tan-1(W/U), to avoid contamination by the velocities transverse
to the plane of the wires. We estimate the general accuracy of
the conventional Reynolds stresses at around 10%. This is well
within the reproducibility of the normal stresses shown below
and is comparable to the accuracy obtained by Anderson &
Eaton (1989) who used a very similar X-probe in a
three-dimensional (3-D) flow. They give a detailed discussion
of the possible measurement errors. The conventional
measurements were obtained by sampling at 1 kHz for 30s. To
measure the phase-dependent quantities, the data acquisition
system was triggered externally once per revolution of the swirl

generator. This defined the arbitrary origin for 8,; subsequent
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Figure 1. Schematic of swirl generator showing measurement
position and co-ordinate system. All dimensions in mm.

values were inferred from Q and the sampling rate. The probe
was sampled at 150 values of 8, per revolution and the

ensemble averages were obtained over 3,000 revolutions of the
swirl generator. The first experiment covered about 330° of the
possible 360° range of 6, to allow estimates to be made of the
terms in equn (1). (Obtaining measurements over the full range
of 8, would have prevented sampling each revolution as well
as real-time processing of the data.) In the second experiment,
the 150 values of 8, covered about 60° to give a resolution in

6 comparable to the 1 mm radial steps taken by the hot-wires.

This range of 8, is equivalent to nearly 88 and should,

therefore, be sufficiently large to investigate the existence of
"streamwise" vortices.

A single hot-wire probe was used to measure closer to the wall
than was possible with the X-probe. The conventional U and
W were obtained by first yawing the probe to find Q, the "total"
velocity defined by Q2 = U2 + W2, This was done in 5° steps,

the large step size being justified by the nearly flat yaw response
at small angles. Then the probe was yawed by an additional 40°
to find W/U using the more sensitive yaw response at large
angles. The phase-dependent U and W were determined in a

similar manner, with Q(0x) found from results taken over
several 5° steps, stored and then searched for the maximum at
each 0x, in case the angle for Q(Bx) varied with . Note that a

single-wire cannot resolve V, which appears in the axial
vorticity equation, or any of the stresses in the co-ordinates of
Fig. 1.

3. RESULTS AND DISCUSSION

The conventional U and W close to the wall are shown in Fig. 2
along with Wr to indicate the localisation of the instability to the
inner third of the boundary layer. The W results suggest a

smaller & than do the U measurements because the
circumferential boundary layer develops only from the start of
the non-rotating section of the swirl generator as an "internal
layer" within the previously-formed axial boundary layer. This
is typical of the formation of 3-D from 2-D boundary layers, eg
Bradshaw (1987) and bears some similarities to the response of
a 2-D boundary layer to a change in surface conditions, eg
Smits & Wood (1985).

Examples of the conventional turbulence stresses are plotted in
Fig. 3. For economy, they are shown together with the
independently determined terms in equn (1) which will be
considered below. Also shown is the "wall" value of 7w ,
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Figure 2. Mean velocities in boundary layer.



obtained by estimating the total wall stress from the Clauser
chart for Q, and finding the wall streamline angle by plotting U
against W for small y. The angle was 35° to the x-axis and was
approximately constant for y <3 mm.

As an example of the phase-dependent mean velocities, W(0s)
is shown in Fig. 4. The profile at y = 5 mm has a variation of
+4%, and is similar in shape to the single-wire measurements of
W closer to the wall. It is, therefore, typical of the profiles in
the region where d(Wr)/or is negative. Between y =5 and 10

mm, the shape of the W(8,) changes to such an extent that
W(B,) in the outer layer becomes approximately anti-correlated

with W(8,.) close to the wall. The changes cannot be attributed
immediately to the instability as such, because they could be just
a consequence of the change in sign of dW/dy as y increases,
Fig. 2. If the first order effect of the phase-dependence is to
alter 8, without altering its suitability as the relevant local length
scale, any phase-dependent perturbation will change sign if the
y-gradient of the mean of that quantity changes sign. However,
the shape of the U(8,,) (which is not shown) for all y resembles

closely the shape of W(0s) in the ourer layer, whereas dU/dy is
always positive. (The variations in U(8,) are greater than in

W(0,), for example, about £10% at y = S mm.) Thus the
phase-dependence cannot be explained entirely as a consequence
of variations in 8. Neither can the dependence of the turbulence
quantities, of which Ww2(B4,t) in Fig. 5 is an example. Note
that these measurements are phase-averaged to get the first term
on the right hand side of equn (1). The shape of 12(0,t) (not

shown) changes appreciably across the boundary layer, tending,
with increasing y, from correlation to anti-correlation with

U(®,) and the outer-layer W(0,). However, Q_»Z(B* ,t) does not
change in shape and remains approximately correlated with W
near the wall (and #2(8, 1) in the outer layer). This difference

occurs even though aw? /dy is always negative as is 0 12 2y,
except perhaps at y =7 mm. In summary, a phase-dependence

in & could explain the changes in U(8,), W(8,) and w2(,t) as

y increases but not those in J(B*,t). This possibility makes it

difficult to isolate the effect of the instability in these
measurements.

Fig. 6 shows the phase-dependent axial vorticity contours for
the range in 8, corresponding to about 68; the full range is not

shown in the interests of clarity. The 5 mm region where
9(Wr)/dy < 0 is equivalent to nearly 2°. The few regions of
negative vorticity near the wall are indicated by the arrows. It is
immediately obvious that there are no strong axial vortices with

scales comparable to 8, probably because of the restriction of
the instability to the inner part of the boundary layer, which
could not be traversed extensively with an X-probe. In this
region there is some evidence for vortices in the form of
contours that presumably would be closed by more extensive
measurements. There is a similar localisation of axial vorticity
in the calculations by Floryan (1989) for curved wall jets where
the instability is also localised. Interestingly, the "vortices" in
Fig. 6 do not appear to be counter-rotating and so are more like
the co-rotating vortices formed from the cross-flow instability,
eg Reed & Saric (1989). It must be noted, however, that this

instability is caused by a cross-stream (in this case
circumferential) pressure gradient and so should not be
important here.

Fig. 3 shows the application of equn (1) tox? and ¥w . The
three terms in the equation were obtained independently from
the conventional measurements, which should equal the sum of
the two terms on the right hand side of equn (1). There is
excellent agreement in all three normal stresses, indicating that
phase-averaging over only 330° did not introduce any serious
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errors. The disagreement in the shear stresses would almost
disappear if they were combined to give the resultant shear
stress in the plane of the wall, (792 + vw?2)#/2, Since this stress

is invariant to any rotation of in the x,0-plane, the disagreement

shown in Fig. 3(b) arose mainly from an error in the anglcﬁ.
Such an error will have a much smaller effect on #? and
and none on 1_12

The balance of evidence suggests that the phase-dependenc e is
not primarily associated with the angular momentum instability.
The phase-dependent mean term is significant only for the axial
motion which does not contribute directly to the axial vorticity.
Furthermore, Fig.s 4 and 5 show a phase-dependence that
extends across the whole boundary layer, and so must have
been established before the formation of the internal layer
containing the instability. The only possible deduction is that
the phase-dependence is caused primarily by the generation of
the swirl, and will therefore occur in any swirling flow, whether
or not it is unstable. Unfortunately, there appear to be no
measurements from other geometries with which to compare the
present results. We note that, apart from the spinning cylinder
flows of Driver & Hebbar (1987) and others, the present swirl
generator should produce a minimum of phase-dependency.
This is because the typical dimension of the generator (in this
case the cell diameter) is much smaller than would be possible
using vanes or other discrete components to produce the swirl.

Phase-dependence may well have to be included in turbulence
modelling. For example, because the phase-de%cndcncc of the
present flow contributes relatively more to u“ than to k, an
algebraic stress model may well over-estimate the turbulence
contribution to the diffusion of 42 . Similarly, the contribution
to k will, on the present evidence, be greater than that to the
resultant shear stress. If the two are related, as through the

eddy viscosity in the popular k-e model, then the model may
have to be altered if the phase-dependence alters.

4, CONCLUSIONS

Significant phase-dependence occurred in a swirling, turbulent
boundary layer affected by the angular momentum instability.
The phase-dependent mean term in equn (1) contributed
significantly to the axial normal stress, but little to the other
normal and shear stresses. There did not appear to be any
significant axial vortices with scales comparable to the boundary
layer thickness, but this may reflect the localization of the
instability to the wall region where the vorticity could not be
fully resolved. The phase-dependence was associated primarily
with the generation of the swirl, and not the instability. It is
likely, therefore, that the turbulence modelling of any swirling
flow will need to account for phase-dependence.
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