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ABSTRACT

The three components of the mean velocity vector and
the components of the Reynolds tensor have been de-
termined by LDV in the stern region flow of a ship-
hull double-model in the wind tunnel. From the mea-
sured values and their derivatives details of the com-
plex flow field and the turbulence for this complex
flow are derived.

NOTATION

a acceleration

hy, anisotropy tensor

d deformation rate

”'I,r symmetrical part of v,

k  kinetic energy of turbulence
L characteristic length

L Lamb vector = v x @

U, incident velocity
u=v, v=v,. w=v, components of velocity vector
v mean velocity vector

Yy shear tensor = dy Zax,

Wy kinematical vorticity number

X=X,.¥=X,,2z =x, coordinates

§4 Kronecker symbal

p density

© magnitude of vorticity vector

@ mean vorticity vector
@, antisymmetric part of Yy
Il second invariant of Vi

INTRODUCTION

The flow around a ship hull is a complex three dimen-
sional field. It would be desirable to have a thorough
knowledge about its details in order to optimize hull
form and propulsion at least for the stationary case.
Nevertheless not very much is known about it. Infor-
mation is obtained from models scaled down by a
factor between 20 and 100. Since measurements in to-
wing tanks are expensive and time consuming, really
detailed data on the velocity field . appropriate to be
used as test cases for prediction methods (Larsson
(1980)) have been obtained on double models (without
rudder, propeller, appendages) in the wind tunnel:
Larsson (1974), Hoffmann (1976). Wieghardt and Kux
(1980}, Lofdahl (1982). Wieghardt (1982) . (1983), (198061,
Knaack et al. (1985). This corresponds to the resistan-

ce test performed in the towing tank (no interaction
with the propeller). With double - models the deforma-
tion of the free surface of the water has been sup-
pressed, as it is neglected in most non-potential calcu-
lation methods, and so is the influence ofall those
motions as roll, pitch, heave, etc.

The complexity of the flow in the stern region is elu-
cidated by the visualization shown in Fig. 1. What is
seen is merely the directional distribution of the wall
shear-stress vector field. Clearly separation is more
than only bubble separation, the equivalent to two  di
mensional separation. This separation seems not to be
present here. What we have is a topologically complex
pattern (compare Peake and Tobak (1980)) with
separation (where the fluid in regions of converging
streamlines escapes away from the wall, the friction
not necessarily going down to zero) and point srpara
tion (where the fluid spirals away from the wall. the
core of the vortex being created. leaving its footprint
as a point on the wall). In addition the figure shows
areas which are the projections of the domains where
in the current investigations measurements are under
way. Space available forces us to restrict the data
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shown here to one single area taken from such a do-
main in a transverse plane (parallel to the planes of
the frames) at a lengthwise coordinate x equal to 8
mm. The origin of the cartesian righthanded coordinate
system used, is shown in the same figure, the 7 axis
pointing upward, the y coordinate running horizontally .

Applying Laser Doppler Velocimetry (LDV) now gives
the possibility to determine the velocity field for both,
the model and the full scale case. The flow field is
not disturbed as it is by material probes and if not
only the three components of the mean velocity vector
but also the six different components of the Reynolds
tensor are measured in points of a three- dimensional
net, many details of the turbulence emerge too (knaack
et al (1985)). With the three component LDV system
now available at the wind tunnel of the Institut Ffiir
Schiffbau (1f§) domains of the field in the stern region
have been scanned to obtain a survey of both fields.
Relating to the mean velocity field, these measure
ments complete a previous pressure probe data set (ob-
tained at almost (1000 points) in the stern region of
this same model. The spacing between the points of
the LDV investigation has been reduced to 2 mm in all
three coordinate directions. Therefore spatial derivatives
can safely be computed by numerical methods from the



experimental values. This means that the gradient
tensor of the mean velocity vector (the shear tensor)
may be calculated and thus vorticity and acceleration,
as well as the derivatives of the Reynolds tensor com-
ponents too and thus the turbulence force on the right
hand side of the Reynolds averaged Navier Stokes equa-
tion (RANSE).

Beside a more complete picture of the flow around
ship hulls with these guantities available it is expected
that more insight into the basic relationships and the
physics of flow fields may be deduced. So the terms of
the RANSE may be computed and compared. At the
same time further characteristics of the velocity field
are emerging and should carefully be checked, a pro-
cess which requires a thorough evaluation of the accu-
racy of all figures, specifically statistical errors have
to be worked out clearly. Seeking for a deeper under-
standing, relationships have to be uncovered which
possibly have remained hidden up to now, just because
we failed in finding the right representation. Vectors
are well understood and the way their components vary
when the basis of the coordinate system is transfor-
med. But what do we deduce from a complete set of
components of a second rank tensor defined with rela-
tion to a given basis system? The determination of its
components relative to its intrinsic coordinate system,
the system based on its eigendirections may contain
the information needed to disclose relationships of
importance.

REVIEW OF THE EXPERIMENT

The measurements proportionating the data used in this
paper were made in the open test section of the (Got-
tingen type) wind tunnel of the IfS. The double-model,
meanwhile being investigated for many years, has beco-
me known as HSVA tanker or Hoffmann tanker, a ship
never built. Model length is 2.74 m and the incident
velocity is 27 m/sec, leading to a Reynolds number
(based on the length) of 5-106 . The model has no
appendages, is suspended in a slotted wall by wires
(which means that no forces may be measured), has
150 pressure taps and boundary layer transition is
forced by tripping. Model beam is .40 m and the dro-
ught is .18 m.

The LDV system allows the simultaneous measurement
of all three velocity components by the crossed beam
{or differential Doppler) technique in backscattering
mode with three pairs of beams of different colour
(514.5 , 488 and 476 nm). The front optics is composed
of two lense systems of constant focal length, their
axes forming an angle of 25 degrees, one emitting two
pairs of incident rays and receiving the scattered radia-
tion of the third incident beam pair, which is emitted
by the other lense system, where the scattered radiati-
on of the first two colours is detected. The frame
supporting the two lense systems is positioned with
high precision under computer control by stepping
motors. The Ar ion laser and the main optics are ar-
ranged on an optical table and connected by fiber
optics (length 10 m) to the front optics. The detectors
(photomultipliers) are situated directly on the front
optics lens systems. The optical arrangement implies
that the three components measured are not at right

angles. By shifting the frequency by acusto-optics
means for all three components the sign. is determined.
Counters were chosen as signal progessors for the
three channels. A specially developed circuit cares that
only coincident signals are accepted for further proces-
sing. A PC monitors the system, processes the data,
controls the positioning. Seeding was used: water dro-
plets with a slight addition of glycerine of a mean dia-
meter of 1 pm.

A tradeoff always has to be found between time avai-
lable for the measurements and statistical accuracy.
For a series of measurements 1000 ( coincident) bursts
per point were taken. This figure was later reduced to
500. Mean averaging time per point came out to be 1
minute. Ideally a probability density function (over the
three - dimensional manifold of the velocity compo-
nents ) should be fitted to the data of each point. The
accuracy with which the parameters of this distribution
can be determined is ruled by statistics. First a gaussi-
an distribution is fitted. The statistical errors will set
narrow bounds to the derivation of more general di-
stribution functions precluding the determination of
further coefficients in the sense of a Gram- Charlier
expansion.The error margins for the components of the
mean velocity vector and of the Reynolds tensor in the
oblicue, in the cartesian and for the latter in its in-
trinsic coordinate system, have to be derived. Since
spatial derivatives have to be computed herefrom. these
errors limit the range of validity of any statement on
relationships drawn from the experimental data.

DETAILS OF MEAN VELOCITY FIELD

As indicated, the details of the field shall be explained
with a small areachosen to exemplify matters. In Fig.
2 the mean velocity field is plotted, the transverse
components as arrows., the x-component as isoline
chart. Included are lines of constant kinematical vorti-
city number as introduced by Truesdell (1953). This num-
ber is a dimensionless measure of vorticity, defined as
Wi= @ /d, with @ as the magnitude of the vorticity
vector and d a scalar representing the deformation
rate. Decomposing the shear temsor v, = dv,/dx,
(x,=x, x, = », x, =z ) into its symmetric ( dy) and
its antisymmetric (w, ) part, as a sum: v, = d gty
we obtain d? = dyd, and w?= wywy (summation
over repeated indices). To scale vorticity we could of
course divide by U, /L (with the incident velocity U..
and a suitable length L), but there seems to be no
appropriate L. Nondimensionalizing with d mixes defor-
mation with vorticity, but is a genuine local scaling.

Investigating vector fields means looking at its gradient
tensor, here the shear tensor. The acceleration, in the
stationary case the convective term on the left hand
side of the RANSE. is but for the factor density (¢)
the product of this tensor with the mean velocity. A
decomposition of this tensor as sum (as we did ahove)
or as product (a very interesting alternative) may give
enhanced insight. Anyhow invariant characteristics of
this tensor should bear valuable information. So it will
be worthwhile to inspect its invariants. its eigenvalues
and its eigendirections.  The left hand side of the
RANSE being dominated by this tensor, the right hand
side is dominated by the Reynolds tensor if we discard
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viscous terms and assume the pressure gradient playing
a secondary role. Again, it is not the tensor itself but
its divergence which represents the vector of turbulen-
ce - force. Inspection of the same invariant characteri-
stics of the Reynolds tensor should thus provide in-
sight too. What are the relations between all these
eigenvectors and the vectors of mean velocity and vor-
ticity ?

Though some of these quantities have been determined
over large parts of the regions scanned. no answer can
be given yet.

Several vectoranalytical identities exist, which may be
exploited in addition. One of the most interesting is
divaes=-2I=1/2(d>~ mz), valid for incompressible
fluids. where II is the second invariant of the shear
tensor, an identity which allows to compute div a,
clearly a quantity containing second derivatives of the
velocity v, solely out of first derivatives of v.

Taking the curl of the RANSE yields
curla = curlL = - _pl'_ curl T
with the Lamb vector L = v x @ on the left hand side

and the turbulence force T , the divergence of the Re-
ynolds tensor, on the right hand side. There is experi-

mental evidence that v. cur/L = 0 , implying v. curl T = 0.

A consequence of v. curlL = 0 is div [v x L] = 0. In
Fig. 3 we compare this divergence (normalized by the
sum of the magnitudes of its three terms) with div v ,
which should be zero (same normalization). The expe-
rimental errors preclude div v, derived from the measu-
rements, from vanishing. The bahaviour of div [v x L]
is not different. So there seems to be some evidence
that in fact v . curfL = 0, implying v . curi T = 0 .

THE REYNOLDS TENSOR

The Reynolds tensor has been determined over specific
regions of the separating flow. Again only a small area
in the plane indicated is shown in Fig. 4. The kinetic
energy k of the turbulence is a quantity modeled in se-
veral prediction methods. A detailed survey is now
available from these experiments which may serve for
comparison. In Fig. 4 we have an isoline plot of k, es-
sentially the trace of the Reynolds tensor. The symme-
try in the y-coordinate is evident and the slight misa-
lignment known from the mean velocity field represen-
tations is found again. Similar plots could be given for
all the components of the tensor, but this is not very
informative. Much more information about turbulence
can be extracted from the Reynolds tensor as a whole.
Though no correlations or spectra have been measured,
there is a possibility to furtzher caracterize turbulence
with the aid of this tensor. First the (real) eigenvalues
and eigendirections of this symmetric tensor may be
used for this purpose. Second, we can determine the
anisotropy of the turbulence following Lumley (1978).

The distribution of one set of eigendirections is shown
in Fig. 5. There is a peculiar difficulty when solving
the (third order) secular equation to find the eigenva-
lues all over the domain scanned. The numerical proce-
dure used to find the first root will yield a value, but
it is not sure whether this corresponds to the same
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root that was determined as the first in the neighbou-
ring point. It is difficult to track the identity of the
eigenvalues as function of the coordinates. If one plots
the three eigenvalues against a coordinate, say y. one
obtains intersecting curves and it Is not without ambi-
guity which is the right branch to follow after the
intersection. An alternative is to identify the eigen-
values according to their eigendirections. One starts
numbering eigendirections at a certain point. giving the
label 1 to say the one with the smallest angle against
the x -direction and so on and proceeds along ane
coordinate tracking this particular eigendirection. Going
back to the eigenvalues plotted against this coordinate
one may be led along another branch than the one
chosen at first sight. Again it should not be forgotten.
that each quantity has a certain incertitude since it was
derived from measured magnitudes. Nevertheless a field
of eigendirections is shown in Fig. 5.

By defining by = ?:—k— ¥y - ;— a4 as dimen-
sionless anisotropy tensor, we may depict anisotropy in
the following way: After determining the eigenvalues
of this traceless tensor, two of them may be chosen
as components of a vector which we may attach to the
point under consideration in our turbulence field. The
direction of this arrow caracterizes the anisotropy. its
length the degree of anisotropy: we have isotropy if its
length is zero, i.e. the two eigenvalues chosen vanish
(and therefore so does the third too). Again if the
identitiy of the eigenvalues chosen could not be tracked
safely, the picture will appear spoiled. Though this may
still be the case with our data, in Fig. 6 we show such
an anisotropy chart.

CONCLUSION

With all components of the Reynolds- and the shear-
tensor determined from experiment in the complex flow
in the stern region of a ship-hull double-model. inte-
resting facts about the mean velocity field and the
turbulence and its anisotropy can be deduced, even
without correlation or spectral measurements of turbu-
lence. Certain relationships show up and it is sugge-
sted that the characteristics of the tensors mentioned
are best studied by investigating eigenvalues and eigen-
directions of the mentioned tensors.
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Fig. 1 Visualization of wall shear-stress
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