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ABSTRACT

The solidification of a binary melt cooled from above is investi-
gated theoretically and experimentally. The partially solidified mushy
layer is accurately modelled as a continuum whose growth is governed
by the local interfacial supersaturation. Convection of the melt is
shown to be important in determining both the rate of solidification
and the development of compositional zonation in the final solid.

INTRODUCTION

When a melt of two or more components solidifies, the composi-
tion of the resulting solid is generally different from that of the melt.
This compositional difference implies that the composition of the fluid
in the near vicinity of the crystallization front differs from that in the
bulk of the fluid and, consequently, that the density is also different.
Differences in density can drive intense convective flows and thereby
play a large role in solidifying systems.

Here we summarize recent investigations (Kerr et al., 1989,
1990a,b,¢) of cooling, from an upper horizontal boundary, a-melt that
releases less dense fluid on solidification. Several novel interactions
between convection and solidification are introduced in turn and
progressively incorporated into a mathematical model. Our theoretical
predictions compare well with results from our laboratory experiments
using aqueous solutions of isopropanol and sodium sulphate. These are
easy to handle in the laboratory and mimic the behaviour of a wide
variety of binary alloys with which it is much more difficult to conduct
controlled experiments.

THE MODEL

The model system that forms the basis for our study is illustrated
in figure 1. A rectangular container is filled with a binary melt
of initially uniform composition Cp and temperature Tp. At some
time ¢ = 0 the upper boundary is instantaneously cooled to, and
subsequently maintained at, a temperature T} that is lower than the
liquidus temperature Ty, (Cy) of the solution. All the other boundaries
are considered to be thermally insulated.

Qur initial experiments used solutions of isopropanol 4nd water,
and a T} greater than the eutectic temperature T. Ice formed at
the upper boundary and grew downwards in thin plates to form the
mushy layer depicted in figure 2. The fluid in the interstices of the
mushy layer is enriched in isopropancl as a result of the selective
growth of the ice. The enriched isopropanol solution is less dense than
the original solution and remains stagnant within the mushy layer.
Below the mushy layer we observed vigorous thermal convection of the
fluid in response to the cooling from above. This convection plays an
important role in the subsequent evolution of the system.

In order to evaluate the experimental results and to apply our
findings to other systems, we have developed a mathematical model
based on our understanding of the physical processes involved in
the laboratory experiments. Equations governing heat and mass
conservation within the mushy layer are derived from Worster (1986).
Transport of heat is governed by thermal diffusion and is described by

ar a ar i}
m 5 = E(kmg) + Eﬁa—f, (1)
where T is the local temperature and ¢ the local volume fraction of
solid. Changes in ¢ result in an internal release of latent heat which
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Fig. 1  Definition sketch for the growth of a mushy layer below a
cold horizontal boundary maintained at a fixed temperature
Ty. Throughout the mushy layer, the temperature (solid
line) is equal to the liquidus temperature (dashed line) of
the interstitial melt. The interfacial temperature T; is less
than the equilibrium freezing temperature of the melt 77 (Co)-
Vigorous convection of the melt keeps its temperature uni-
form. The boundary temperature is greater than the eutectic
temperature T, and a mushy layer forms adjacent to the
cooled boundary.

Fig. 2 A side view of the mushy layer in an isoproparrol experiment.
The mush consists of closely spaced, plate-like ice crystals and
interstitial melt. This fine-scale structure allows the mushy
layer to be treated theoretically as a continuum.

must be conducted through the mushy layer. The thermodynamic
parameters are the specific heat per unit volume ¢, the thermal
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conductivity & and the latent heat per unit volume of solid L.
Subscripts ‘A, “m’ and later ‘I’ denote properties of the solid phase,
the mushy layer, and the liquid respectively. We evaluate the thermal
properties of mushy layer by equating them to local averages, weighted
by the volume fraction, of the properties of the constituent phases:

cn = ¢cg + (1 = @) (2)

and

km = ¢ksg + (1 — @)k (3)

Huppert & Worster (1985) and Worster (1986) demonstrate that
the depth of a stagnant mushy layer is determined principally by
thermal balances. Therefore, since the thermal diffusivity is typically
much greater than the solutal diffusivity, we assume that vertical
diffusion of solute is negligible. Conservation of solute in the mushy
layer can then be expressed by

1-0% =©-m, )

where C is the concentration of the interstitial liquid and Cjp is the
uniform concentration of the solid dendrites. Finally, we couple (1)
and (4) via the linearized liquidus relationship

T = Ti(C) = Ti(Co) + T(C — Go), (5)

where I' is a constant, on the assumption that the mushy layer is in
local thermodynamic equilibrium.

Conservation of heat across the thermal boundary layer at the
moving mush-liquid interface requires that

T

[T = T0) + Lod] i = kn gy

— By, (6)

z=hi—

where h;(t) is the position of the interface, T; is the temperature there
and Fr is the convective heat flux from the liquid to the mushy region.
Conservation of heat in the region of well-mixed liquid is expressed by

a(H — h)Ti = —Fr, (7)

where H is the initial depth of the liquid. The heat flux Fr
is approximated by the well known semi-empirical relationship for
convective heat transfer

1/3
- ag _ ma4/3
P = (W) (T - T)Y, (8)

where g is the acceleration due to gravity, a the coefficient of thermal
expansion of the liquid, &; its thermal diffusivity, v its kinematic
viscosity and A is an empirical constant. This relationship, which is
often expressed in the dimensionless form Nu oc Ra'/®, where Nu is
the Nusselt number and Ra is the Rayleigh number, can be derived
from the assumption that the heat flux is independent of the depth of
the convecting region.

To complete the model we adopt the condition of marginal equi-
librium (Worster, 1986) which states that the temperature gradient in
the boundary layer in the liquid ahead of the mush-liquid interface is
equal to the gradient of the local liquidus temperature. This condition,
combined with conservation of solute at the mush-liquid interface,

leads to
¢=0 C=0C (z=h) (9a,b)

in the limit of zero solute diffusivity. We note that (9b) and (5) imply
that

T; = Ti(Co), (10)
while (9b) and (4) imply that the bulk, horizontally averaged,
composition Cy throughout the mushy layer remains constant and
equal to the initial concentration Cy. The solid fraction is then readily
shown to be

_ G -C
¢ = m (11)

This system of equations was integrated numerically to determine
the evolution of h; and T}. Results are shown in figure 3 where they are
compared with data from the experiments with isopropanol. Very good
agreement is found between theory and experiment for the growth of
the mushy layer (figure 3a) and the cooling rate of the solution (figure
3b). The data show that the temperature of the solution fell below
the liquidus temperature during the course of each experiment. Such
supersaturation, which cannot be accounted for with an equilibrium
model, can have extremely important consequences for the evolution
of the system, as we demonstrate below.
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Fig. 3 (a) The depth of the mushy layer h; and (b) the temperature
of the solution Tj versus time including data obtained from
isopropanol experiments in which Ty = —25°C, Gy = 83.2
wt.% H,0, To = 40°C and H = 18.8cm. The dashed
upper curve was calculated using the equilibrium assumption
that the interface temperature T; is equal to the initial
liquidus temperature of the solution T1(Cq). The solid lower
curve was calculated using the kinetic growth law (11) to
determine 7;, and gives a better fit to the data. The hori-
zontal dotted line in (b) indicates the liquidus temperature
Ty = —6.2°C. In the calculations cpg = 1.832J em™? °C_l,
o = 39127em™*°C, ks = 002Wem2C), by =

0.0037Wem=°C™", £5 = 3067 em=3, » = 0.057em?s—),

A = 0.056 and the liquidus was represented by Tt = —6.2 +

0.85(C — 83.2), where C is in wt.% H,0 and Ty is in °C. All

these values were determined from published data. Our own

measurements suggested that o = (2.25 + 0.15T) x 10~* °C_1,
where T was taken to be the mean of T; and Tj.

DISEQUILIBRIUM

Crystal growth is necessarily a- non-equilibrium process; some
supersaturation must exist in the vicinity of a growing crystal in-
terface in order to drive solidification. Usually, the departures from
equilibrium are small and good predictions of growth rates can be
made by assuming that the system evolves through equilibrium states,
as we have just seen. A more accurate model of crystal growth
takes account of the interfacial kinetics involved by recognizing that
the rate of growth is a function of the local supersaturation. We
replace the equilibrium assumption leading to (10) by the simple linear
relationship

hi = G(Tr - T), (12)

where Ty, is the liquidus temperature at the interface and G is a
constant. The interfacial temperature is now less than 77 and C; < Cp.
Correspondingly, since there is still no solute flux across the interface,
the solid fraction at the interface, given by (11) with C = C;, is grearer
than zero. By carefully measuring the evolution of the depth of the
mushy layer h;(t) and the temperature at the interface T; with a 1 mm
bead thermistor during many experiments, we have confirmed (12) for
the water-isopropanol system for supersaturations Ty, — 7T} up to 3°C

and measured § to be approximately 2.2 x 10~*ems=1°C™"
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The kinetic growth law (12) gives a timescale g = H/G(TL -
Ty) associated with disequilibrium which can be compared with the
timescale for thermal diffusion 7 = H?/s. The ratio € = o /Tk is
typically very small; for example, it takes the value 1.2 x 10~2 for our
experiments with isopropanol. This indicates that when diffusion is
the only transport process (Huppert & Worster, 1985; Worster, 1986),
departures from equilibrium are negligible except at times of order g,
which are very short compared with the solidification -time, which is
of order 7. However, we shall see that these small departures are
important when coupled with convection of the melt.

The non-equilibrium model obtained by employing (13) rather
than (9) gives excellent agreement with experimental data for the
growth of the ice (see figure 3a). It also accounts for the occurrence
of supersaturation in the liquid region after about 200 min. The
discrepancy between the predicted and experimentally observed results
for the level of supersaturation is due to heat gains from the laboratory.

SECONDARY CRYSTALLIZATION

The experiments with isopropanol solutions were meta-stable for
much of their evolution. That is, had there been sites for nucleation
within the supersaturated liquid region then crystals could have grown
anywhere in that region in addition to the crystals growing within the
mushy layer. Such secondary crystallization has been observed, both
by us and by previous authors (Turner et al., 1986), in laboratory
experiments using various aqueous solutions. An example is shown
in figure 4. In these cases the solid forming the dendrites in the
mushy layer was denser than the solution, and nucleation sites for
crystallization may have been provided by a few small erystals that
settled from the mushy layer.

The crystallization at the floor locally depleted the melt of solute
and produced a buoyant residual liquid, which caused compositional
convection in the whole liquid region. The convection of solvent away
from the growing crystals allowed for very efficient growth into the
supersaturated liquid which we model by assuming that the crystals
grew sufficiently rapidly to restore thermodynamic equilibrium to the
liquid. This gives a strict upper bound on the rate of growth of the
crystals on the floor and, as shown below, gives a good approximation
for the observed growth. There is still kinetic undercooling at the
mush-liquid interface as illustrated in the temperature profile of figure
5.

If the erystals on the floor are assumed to occupy a solid layer of
thickness hy(t) then global conservation of solute demands that
; H—h;—hy .
hy = ————C 13
s T (13)
where C) is the time-dependent composition of the well-mixed liquid
region. Our assumption that the secondary crystal growth restores
equilibrium to the convecting liquid can be expressed by

Ti = Ti (), (14)
and the latent heat released modifies equation (7), which becomes

Lphy — a(H — h; — kyYTi — eghy Ty = Fr. (15)

While the release of solvent by the secondary crystal growth has an
obvious direct effect on the liquid region, it also has an indirect effect
on the evolution of the mushy layer. Even though there is no flux of
solvent across the mush-liquid interface, the changing composition of
the liquid implies that the composition of the solution incorporated
into the advancing mushy layer decreases with time. Consequently,
the bulk composition of the mushy layer is a function of height. In
fact, since we have neglected vertical transport of solute within the
mushy layer, the bulk, horizontally averaged, composition Cy(z) is
given simply by the composition of the liquid region at the time t;
when the position of the mush-liquid interface h; was equal to 2. That
15

Cul(z)=Ci(t) where  hi(ti) = 2. (16)

One effect of the variation in C(z) is that the solid fraction within
the mushy layer is altered

CH(Z) =0

) ()

& =
with consequent changes in the thermal properties (2) and (3) and the
internal release of latent heat in (1). These changes all affect the rates
of evolution of the system.
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Fig. 4 A side view of an experiment in which an aqueous solution of
NayS04 was cooled from above. It shows the growth of both
a mushy layer and a layer of composite solid at the roof of
the tank, and the growth of a layer of faceted NazS04.10H,0
crystals at the base.

z=0

he(t) Eutectic Solid

Mushy Layer

Melt
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Fig. 5 Definition sketch, similar to figure 1, for the growth of a
mushy layer below a cold horizontal boundary maintained
at a fixed temperature T;. There are two additional layers.
The first is a layer of composite solid which grows on the
roof when Ty < T.. The second, which usually appears once
the melt temperature T reaches Tp(Co), is a solid layer of
crystals thal grows on the base at a rate sufficient to keep
the melt on the liquidus. The temperature within the basal
solid is taken to be equal to Tj.

COMPOSITIONAL STRATIFICATION

A much more important consequence of the secondary solid-
ification is that it provides an explanation of the compositional
stratification that is often observed when binary melts are completely
solidified. In order Lo investigate this effect quantitatively, we carried
out experimental and theoretical investigations of systems in which
the cooled upper boundary was maintained at a temperature Ty that
was lower than the eutectic temperature T.. A schematic diagram
of such a system is shown in figure 5. A composite solid made up
of crystals of the two pure end members of composition Cq and Cg
occupies the region 0 < z < he(t). Heat transfer across the layer is
solely by conduction. At very early times T} is less than 7, and there is
no mushy layer. For most of the evolution, however, the temperature
in this composite layer rises from Ty at z =0 to T, at z = h.. Below
the cutectic front z = he, the system looks much as before: a stagnant
mushy layer extends from z = he to z = h; and lies above a
conveeting liquid region. Secondary crystals growing near the base
of the container fill a depth hy from the floor. This structure can
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be seen in the photograph in figure 4. The eutectic front = = h,
eventually reaches the base of the container by which time the whole
system is solidified. Once this had occurred in the experiments the
whole solidified block was cut into horizontal sections and the bulk
composition of each horizontal section was measured.

Results are shown in figure 6. We see, in figure 6b, that the
mean composition decreases with depth from the top of the sample,
which reflects the decreasing composition of the liquid region during
the experiment. There is 2 jump in mean composition at the height
where the mush-liquid interface met the crystal layer growing up from
the floor. The compositional discontinuity also marks a discontinuity
in crystal morphology from vertically oriented, dendritic crystals grown
from the roof to randomly oriented, smaller crystals grown at the floor.
This change in morphology is known by metallurgists as the columnar-
equiaxed transition (Flood & Hunt, 1987). Below this discontinuity the
bulk composition is essentially uniform and equal to the composition of
the pure component Cjg. A smaller value of G than the one appropriate
to the isopropanol system was needed to fit the data. This reflects the
fact that crystals of sodium sulphate decahydrate are more faceted
than ice crystals and require a greater supersaturation for a given
growth rate.
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Fig. 6 (a) The thickness of the toof solid h.(t) (upper curve)
and mushy layer h;(t) (central curve) measured from the
top of the container (height 18.8 em) and the basal solid
hy(t) (lower curve) measured from the floor of the tank
for the complete solidification of an aqueous solution of
sodium sulphate. Circles are experimental data. (b) The
compositional zonation of the final solid block as predicted
by the theory and as measured in the experiment. The error
bars indicate uncertainties due to the melting of the solid
while it is being cut into the 2 em thick horizontal sections
for sampling. This has been indicated by the error bars. In
the calculations ¢; = 4.1] cm““C_l, cp = 2.66]1 em=3°C7?
Lp = 337TTem™3, L, = 306Jem™3, v = 0.023cm?s™!
k= 0.0059Wcm=°C™", ks = 0.08Wem™'°C™, ko =
0.022Wem=1C™", ) = 0.056, & = (0.240.24T3) x 10-°C™"
where T} is the liquidus temperature of the melt. The
initial melt temperature and composition were 30.5°C and
16wt. % Na,S04. The liquidus curve was calculated with
a cubic spline using published data. The kinetic growth

parameter used was G = 1.5 x 10~*cms "¢
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DISCUSSION

At a fundamental level, the agreement between the results of
our theoretical model and experiments validates our description of
the mushy layer and its simulation as a continuum, There are many
practical applications of this macroscopic approach to various situa-
tions considered by crystal growers and metallurgists. There are also
important geological applications, for example to the understanding
of the cooling and solidification of lava flows and magma chambers.
Equilibrium models of solidification will accurately predict the removal
of any superheat from the lava and the initial formation of a dendritic
crust but, in such models, the interior of the lava cannot cool below its
initial liquidus temperature. In contrast, the present models show that
the coupling of fluid-mechanical and disequilibrium effects can cause
additional crystallization of the lava, either at the base of the flow or
in its interior. This secondary solidification changes the composition
of the lava, which lowers the liquidus temperature and allows cooling
and convection to continue. Qur study demonstrates further how the
changing composition of the melt results in a stratification of the bulk
composition of the mushy layer. It also provides a mechanism for the
redistribution of solute during the complete solidification of an alloy
cooled from above. Such macrosegregation is observed in completely
solidified ingots and in igneous rocks.
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