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ABSTRACT

The formula derived by Lighthill (1967) and extended by
Morton (1984), as well as others, for the source strength of
vyorticity at a wall is shown to be largely independent of the
material properties of the fluid. Previous derivations assume
the fluid to be Newtonian.

The rules governing the configuration of the integral
curves of the direction field of vorticity transport in a flow
field are established. Examples are used to illustrate the
features of these vorticity transport lines.

Examples are used also to illustrate how vorticity may be
generated within a flow field by effects due to material pro-
perties such as compressibility.

1. INTRODUCTION

The idea of determining an expression for the vorticity
source at a wall is not new. In particular, Lighthill obtained
the source strength at a wall by applying the no-slip condition
and assuming the flow to be at constant density and
Newtonian. Morton extended this work to more general
cases, and Wu et al. (1987) included further three-dimensional
and compressibility effects in their expression. Specifically,
Morton’s expression (in the present notation) for the source
strength is
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where v, is the velocity of the (non-rotating) plane wall with
unit normal vector #, and pgy and pg are density and pressure
at the wall.

All previous work derives the source strength from the
expression for the diffusive vorticity flux of a Newtonian
fluid. The resulting expression does not, however, contain the
parameter of this material behavior (the kinematic viscosity),
but only the dynamical boundary conditions at the wall. This
is a strong indication for the possibility that the form of this
expression is independent of material properties. This point is
addressed in section 2.

In section 3 the direction field of vorticity transport is
considered in the simple case of plane flow at constant
density. Finally, section 4 gives examples of vorticity
generation by a vortex near a wall, a mechanism important in
turbulence, and two examples of vorticity generation by the
baroclinic torque in steady and unsteady compressible flows.

2. THE VORTICITY SOURCE STRENGTH AT A SOLID
BOUNDARY

Consider a body of fluid in an inertial frame. Let the
coordinates of a material element of fluid in this frame be x.
The velocity field is v(x,r), where ¢ is time. The vorticity
@(x,r) defined as curl v. It is twice the angular velocity of
the material element.

Introduce a quantity @, of which the vorticity is the
density. Le., vorticity is Q per unit volume. Q is a measure
of specific angular momentum, i.e., of angular momentum per
unit mass. Now consider a tensor quantity J, for which
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This equation defines J as the transport per unit time across
unit area of the quantity Q. J has the dimensions of
acceleration and is a measure of the rate of transfer of specific
angular momentum per unit area. It is therefore proportional
to the torque applied at that area.

Let the fluid be bounded by a solid wall normal to the z-
axis of a Cartesian frame. The torque exerted by the wall on
an element of fluid is the curl of the force exerted by the wall
on the element. Per unit wall area this force may be written
as Sk, where S is the stress at the wall and & is the unit
vector normal to the wall. Therefore,
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is a measure of the transport of specific angular momentum
per unit area and time across the wall. The subscript signifies
pertinence to the wall.

In order to examine the right hand side of this expression,
write the stress as

$S=R-1p, @
where (—p) is the isotropic part of the normal stress (p is the
pressure), / is unit tensor, and R is the frictional stress. R
contains the tangential stress clements denoted with the
symbol 1, as well as the anisotropic part of the normal stress,
which leads to normal stress differences denoted by the
symbol ¢. Thus,

S=R-1Ip,
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This may be related to the momentum equation, which, at the
wall, becomes
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when the no-slip condition is applied and body forces are
excluded. dvg/dr is the acceleration of the wall. This may be
further simplified for a rigid wall, because the strain rates
leading to the terms 01, /dy and dt,,/dx are then identically
zero on the wall as a consequence of the no-slip condition.
Incorporating this in (7) and performing a vector
premultiplication with (—k) gives
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The last term on the left was added to supply the z-component
on the right. T is the tangential stress at the wall
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Comparing (8) with (6), it follows that
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The middle term on the right recovers Morion’s
expression, equation (1), without any assumptions about
material behavior. That this is likely, might have been
recognized by Morton, Lighthill (1967) and Wu et al., from
the disappearance of the kinematic viscosity in their
derivation.

The last term on the right is associated with the transport
of the wall-normal component of vorticity. This may differ
from zero in three-dimensional flows (see also Wu et al.).

The first term on the right arises from wall-parallel
components of gradients of the normal-stress differences.
Though these occur as consequences of a class of material
behavior, the manner in which the material behavior produces
them (the constitutive equation) does not influence the form of
the expression. The present derivation therefore yields the
important new result that the vorticity source strength (9) at a
wall is largely independent of material properties.

A fourth term needs to be added to the right side of (9) for
three-dimensional flows in which the wall is curved in a plane
normal to the wall shear stress Tg. This term is

L grad - (ix1o), (10)
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see Wu et al. Here 7 is to be understood as the wall-normal
unit vector. In the present derivation, grad i was presumed to
be zero (plane wall) for simplicity.

3. THE VORTICITY TRANSPORT

Once vorticity is generated at a boundary, it can be
transported by diffusion and convection into the flow field. In
the immediate vicinity of the boundary, the convective
transport vanishes because of the no-slip condition, and
diffusion is first required to move the vorticity to regions of
finite velocity before the convective transport can become
effective.

At this point it is important to realize that vorticity need
not be generated at the boundaries. For example, density
gradients not aligned with pressure gradients lead to finite
"baroclinic torque”. Irrotational body forces are a further
possible distributed source of vorticity. However, if the fluid
is not subjected to a net external torque, the net vorticity
change must be zero, and vorticity is only generated in equal
and opposite amounts no matter whether it occurs at a wall or
within the flow field.

These points may be seen more clearly if the curl of the
momentum equation
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is formed to produce the vorticity transport equation
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Here f is the specific body force, whose curl may be seen
from (10) to contribute changes of vorticity. The other two
terms on the right represent the diffusive transport and the
baroclinic torque. The second term on the left is due to that
contribution to the rate of change of angular velocity which
arises from the stretching of vortex lines.

It is interesting to discuss the form of (11) and (12) at a
non-accelerating no-slip boundary in the absence of body
forces, when (11) degenerates to
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(div §)g= 0, (13)
and, since (gradv ), is then also zero, (12) degenerates to
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Le., the baroclinic torque is zero at a non-accelerating no-slip
boundary.

In order to illustrate the convective and diffusive transport,
consider the special situation of constant-density Newtonian
flow, for which

R =2pvD,
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in indicial notation, and Vv is the kinematic viscosity, so that
(11) and (12) become
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where
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and

%t& —(grady)-® = vdiv grad® (16)

To simplify the illustration further proceed to text-book land,
where the world is plane, and vorticity becomes a scalar,
having only the y-component if the flow plane is chosen to be
the (zx)-plane. The stretching term then vanishes, and
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Consider first the simple case of steady laminar channel flow
see Fig. 1. Here grad p = dp/dx is a negative constant, the
velocity profile is parabolic, gradw=dw/dz is a negative
constant, and lines of constant vorticity are parallel to the x-
axis. Hence the diffusive vorticity transport (down the
vorticity gradient) goes straight from one wall across to the
other, see Fig. 1.
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Fig. 1  Vorticity transport in channel flow. (Sketch only)

To the diffusive transport the convective transport must be
added to obtain the local vorticity transport vector. This
occurs in the direction of y if @ is positive and in the direction
of (—v) if ® is negative. In the example of the channel flow,
the convective transport therefore changes discontinuously at
the center of the channel, and disappears at the walls. The
resulting line of vorticity transport (parallel to the local
direction of vorticity transport) is as shown in Fig. 1, making
a kink with finite angle at the centerline.

Some students find it difficult to accept this way of
looking at vorticity transport, because they feel that
convection can convey only in the direction of v. This is
certainly true of a quantity that can only be positive.
However, the convention adopted here is that convection of a
negative quantity downstream is equivalent to transport of the
positive quantity upstream. As will be seen later, this gives
the vorticity transport field the appropriate symmetry without
making it necessary to discuss positive and negative vorticity
separately.

In this convention the vorticity transport field lines usually
form a kink where they cross lines of zero vorticity.

Now consider the case of external flow, for example over
a circular cylinder, at different Reynolds numbers, starting
with the creeping flow at Re— 0. This is a particularly
simple case because the lines of constant @ have fore-and-aft
symmetry and the convective transport may be neglected
compared with the diffusive transport, see Fig. 2. It follows
that the J-field, which (in the absence of convection) is
everywhere normal to the lines of constant @, also has fore-
and-aft symmetry. All the vorticity generated in the upper
half at the cylinder surface flows through the stagnation
streamline and back into the body in the lower half, in equal
amounts in front of and behind the body. A J-field line
leaving the surface signifies generation of positive vorticity,
and a J-field line entering the body signifies destruction of
positive vorticity (equivalent to generation of negative
vorticity). Note that no net vorticity is produced, consistently
with the absence of an external torque.

Fig.2  Lines of constant vorticity (dashed) and lines of
vorticity transport (full lines with arrowheads) for

creeping flow over a circular cylinder Re — 0.
(Sketch only)

Now add a small amount of convection by increasing the
Reynolds number to 4. (For this purpose and the higher
Reynolds number, it is convenient to use the results of Apelt
(1961) and Keller and Takami (1966) as given by Batchelor
(1967).) The flow field loses its fore-and-aft symmetry, see
Fig. 3. The vorticity maximum is moved upstream from its
mid position, and consequently the division between the
transport through the rear stagnation line and the transport
through the upstream stagnation line is also moved upstream.
This is because, at the wall, the J-field lines must be
orthogonal to the lines of constant @. Also, some of the J-
field lines leaving the body from the upper half reenter it in
the upper half. The J-field lines form kinks at the symmetry
plane (@ = 0) which point in the local y-direction,
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Fig. 3a Lines of constant vorticity, Re = 4. After Keller and
Takami, taken from Batchelor.

'x

Fig. 3b  Lines of vorticity transport, Re = 4. (Sketch only)

Now add still more convection by increasing the Reynolds
number to 40. This causes both a separation to appear, and a
new line of zero vorticity to leave the body and cross the rear
stagnation streamline, see Fig. 4. The lobes formed by the
lines of constant vorticity are further elongated in the
downstream direction. The J-field lines may be constructed
by aligning them with (—grad @) at the wall and by the kink
where they cross a line of zero vorticity pointing in the
direction of v. Note the special case of the saddle point
formed by the lines of constant @ on the rear stagnation
streamline.

No further qualitative change occurs in the lines of
constant @ or in the J-field lines with further increase of
Reynolds number (assuming the flow to remain steady). The
qualitative features of Fig. 4 also apply to a large class of
other bodies. For example, the J-field lines on a lifting airfoil
with separation are sketched in Fig. 5 and are seen to be
topologically the same as those of Fig. 4.

The two simple rules used here for constructing the J-field
lines in two-dimensional flows are not simply extendible to
each of the components of @ in the case of three-dimensional
or axially symmetric flow. This is because of the fact that the
stretching term does not vanish. They do apply in plane
unsteady flow, however.

o 2yl
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Fig.4a Lines of constant vorticity, Re=40. After Apelt,
taken from Batchelor.

Fig. 4b  Lines of vorticity transport, Re = 40. (Sketch only)

4. EXAMPLES

The vorticity source strength at a wall, applied to plane
steady flow over a flat plate with a rounded leading edge,
gives the well-known result that all the vorticity is generated
near the leading edge of the plate, because this is the only
region where the pressure gradient is significant. Another
well-known example is flow resulting from the impulsive
acceleration of a flat wall from rest to a constant velocity
parallel to the wall, in which all the vorticity is generated at
the instant of acceleration at the wall. These results are
reiterated here only to point out that the flow does not have to
be Newtonian for them to be true.

Vortex Near a Wall

Massive transport of vorticity away from a wall to
distances that are large compared with the boundary layer
thickness may occur when convective transport becomes
active close to the wall. This is precisely what happens at
separation, because the vorticity generated upstream and
conveyed by the boundary layer is shaved off by convective
transport with a component normal to the wall. This is also
the mechanism by which a vortex swimming over a flat-plate
boundary layer may cause vorticity to be convected away
from the wall.

Consider a vortex of circulation I' located a distance h
above a flat plate in plane steady Newtonian flow at constant
density. The pressure change at the plate caused by the
presence of the vortex may be obtained approximately by the
method of images to be
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Fig. 5 Flow over a lifting airfoil showing topological
similarity to flow over circular cylinder.
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Fig. 6 Vortex over a flat plate boundary layer showing

pressure distribution and vorticity source strength
for weak vortex (sketch only).
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where U is the free-stream speed and x is measured along the
flat plate from an origin directly under the vortex, see Fig. 6.
Hence equation (9) gives
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This is also sketched in Fig. 6. As may be seen, an upstream
area of negative vorticity production is followed by a
downstream area of positive vorticity production and no net
vorticity is produced. If, however, U T/htis sufficiently large,
the pressure gradient may be strong enough to cause
separation, or, in other words, the negative vorticity
production rate may be fast enough to cause the wall vorticity
to drop to zero, see Fig. 7. If this happens, practically no
additional vorticity production occurs downstream of this
point, because the pressure gradient under the separated flow
is very small. Thus, a sufficiently strong vortex close to the
wall may extract a new vortex from the wall through the
mechanism of separation.

Now extend this to the three-dimensional case of a strong
oblique vortex over a flat plate. It is easy to see that the wall
shear stress field (wall streamlines) will display the pattern
shown in Fig. 8. If, in addition, the distance h varies along
the length of the vortex as shown in Fig. 9, the wall
streamline pattern (also shown in Fig. 9) discussed by Perry
and Hornung (1984) results.

This somewhat abstract example has relevance to
turbulent boundary layers, which may be characterized
approximately as a complex unsteady arrangement of vortices
in mainly inviscid flow above a viscous sublayer close to the
wall. The vortices may be strong enough to extract new
vortices from the wall by causing the sublayer to separate.
Thus, the pattern of wall streamlines that might be expected
under a strong hairpin vortex is as shown in Fig. 10.

1t is interesting to observe that the numerical computation
of turbulent boundary layer flow by Moin and Spalart (1987)

Fig. 7 Vortex over a flat plate boundary layer showing
pressure distribution and vorticity source strength
for a stronger vortex that produces separation

(sketch only).
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Fig. 8  Oblique strong vortex over a flat plate showing wall
streamline pattern (sketch only).

(direct simulation of the Navier-Stokes equations) displays
many such structures in the wall streamline pattern, see Fig.
L

Baroclinic Vorticity Generation by Shock Waves

At locations other than the wall, the baroclinic torque
grad(l/p) x div § in equation (12) is a possible source of
vorticity in flows with variable density. In the regions where
this baroclinic torque is active, div S often (but not always)
degenerates to (—gradp). Thus, the baroclinic torque is finite
if pressure gradient and density gradient are not aligned. In
steady flows, such a situation may arise within a curved shock
wave. An elegant derivation for the vorticity after a curved
shock , is given by Hayes and Probstein (1959). It leads to

_ U (¢
Tor

, —— cos B, (19)

where U is the free-stream speed, r is the radius of curvature
of the shock, € is the inverse density ratio across the shock,
and B is the shock angle. For a shock wave of hyperbolic
shape with a finite radius of curvature r; at the front and
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Fig.9 a) Curved oblique vortex over a flat plate. b)
Associated wall streamline pattern. (Sketch only)

projection of hairpin vortex

P

Fig. 10 'Wall streamline pattern under a strong hairpin
vortex (sketch only).

asymptoting to the Mach angle far downstream, Fig. 12 shows
the distribution of @, over the shock angle for a diatomic gas
at Mach number 4 and 10. Clearly, @, =0 at B=m/2 and at
the Mach angle, and a maximum occurs somewhere between
these values. This maximum increases rapidly with Mach
number and typically produces vorticity comparable with that
in the boundary layer at Mach numbers around 10. The
vorticity distribution at the shock is carried downstream
unchanged in the inviscid part of the flow (convective
transport only) because the flow along streamlines is
isentropic and therefore the baroclinic torque vanishes. Hence
the vorticity maximum is eventually "swallowed" by the
boundary layer. Since a vorticity distribution with a
maximum is dynamically unstable, this may influence the
stability of the boundary layer and cause early transition, see
Stetson et al.(1984). Some control over this effect may be
exercised through the choice of the nose radius of curvature of
a blunt body generating such a shock.

A second example under this heading is that where a
shock wave traverses an interface between fluids at different
densities. Consider a circular cylinder of gas A surrounded by
gas B at a different density. Let a plane shock wave whose
front is parallel to the axis of the cylinder, traverse the
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Fig. 11 Wall streamline pattern in a turbulent wall flow
computed by Moin and Spalart.
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Fig. 12 Vorticity produced by the baroclinic torque in a
curved shock. (Assumed shock shape is a hyperbola
with Mach angle as downstream asymptote.) a)
Shock shape for Mach numbers 3 and 10. b)
Vorticity distribution over shock angle for Mach
numbers 4 and 10.

Fig. 13 Shock wave traversing circular cylinder of
different-density gas. Schematic for gas A lighter
than gas B.



cylinder, see Fig. 13. The circulation generated on one side
of the cylinder by the baroclinic torque may be crudely
estimated as follows: Let the interface between the two gases
have density difference Ap and thickness 8;. Let the pressure
difference across the shock wave be Ap and let its thickness
be 8,. Then

1 _ ApAp )
grad— X gradp = - — sinB®
P 8,8, p?

is the rate of vorticity production in the area of intersection
between shock and interface. In a time
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the circulation produced is
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(Other authors have given more accurate estimates and
numerical computations.) Thus, a pair of line vortices of equal
and opposite circulation is produced, the order of magnitude
of which is given by equation (20). Of course, this can only
be a crude estimate, because complex secondary interactions
between diffracted shock waves with interfaces and between
each other also create vorticity through the baroclinic torque,
apart from the approximations inherent in the above.

A recent experiment by Jacobs (1989), in which a laminar
circular helium jet blowing across a shock tube containing air
was traversed by a shock, demonstrates this mechanism
dramatically. Earlier experiments by Haas and Sturtevant
(1987) in which gas A was contained by a soap film or a very
thin membrane with a great variety of the parameters also
show the various stages of development during the process.

The baroclinic torque is clearly an important mechanism
in compressible turbulent flows. It is the dominant process in
supersonic mixing.

5. CONCLUSIONS

The expression for the vorticity source strength at a solid
wall bounding a fluid, which had previously been derived by
assuming the flow to be Newtonian, was shown to be largely
independent of material properties. Some features of the
vorticity transport field were obtained by considering the
simple case of plane Newtonian flow. Examples relevant to
wall turbulence and to compressible flow were used to
illustrate generation mechanisms.
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