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ABSTRACT

A generalized theory is presented for sound
propagation in lined ducts of arbitrary cross
section where acoustic wave propagation in the
lining is also taken into account. The effects of
a mean fluid flow in the duct airway, an
anisotropic bulk reacting liner and a limp,
impervious membrane covering the liner are all
taken into account. Isotropic and locally
reacting liners are treated as limiting cases.
The general analysis is applied to ducts of both
rectangular and circular section, taking into
account higher order modes as well as plane wave
sound propagation. Some design charts for duct
attenuation in octave frequency band averages and
in terms of dimensionless parameters are
presented.

INTRODUCTION

The work described here extends previous
analytical work (Cummings, 1976) to include the
practical case of a duct liner separated from the
duct airway by a limp impervious membrane. A
general analysis for any duct section is followed
by an evaluation of ther particular case of a
rectangular section. Even and odd higher order
modes and plane waves are considered for ducts
with flow and both isotropic and anisotropic, bulk
reacting liners. The results are also applicable
for liners protected with a perforated panel,
provided the panel has an open area in excess of
40% (Cummings, 1976) and is separated by an open
mesh spacer (25mm mesh minimum) from any membrane
covering the liner.

THEORY
The geometry for a general section duct is shown

in Figure 1. Note that advantage is taken of
symmetry and only half the duct section is

analysed.
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Figure 1. Geometry for a general duct section

Propagation in the Duect Airway.

The wave equation for the velocity potential ¢ in
an arbitrary cross section airway with a mean
axial flow U, in the z direction may be written as
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It is assumed that the z coordinate is separable.
Thus

2)

where the R subscript refers to the direction
normal to the duct wall(s) which contain(s) the

liner. Using eq.(2), eq.(l) may be written as
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The following relations for the acoustic pressure
p and particle velocity v follow from the
definition of the potential function implied by
eq.(3).
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v=-V9 and p= po[ﬁ? + U, EE]¢ (4)
The variable u is introduced; it is defined in
terms of the complex phase speed cy in the z
direction in the duct airway as follows:
u = z - ¢yt (5)

Making use of eq.(5) and assuming a separated
solution for the potential function ¢, a solution
for eq.(3) is

¢ = GH(u) (6)
Substituting _eq.(6) into eq.(3), and dividing
through by cgGH, the following is obtained
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Eq.(7) is separable and can be solved in terms of
axial and radial wavenumbers kN and kM
respectively. Thus,
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Using the relation ky = w/cN and eq.(5) a solution
to eq.(9) may be written as
i(wt - sz)
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Defining the Mach number M as U /c,, substituting

eq's (8) and (9) into (7) and using the relation
k, = w/c, the following is obtained:
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Propagation in the Duct Liner.

(11)

The wave equation in terms of the sound pressure
Pg. axial phase speed c, and radial phase speed Cy
in the porous liner, may be written (assuming no
mean axial flow in the liner) as:
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For pressure balance at the duct liner boundary,
the solution for p, must have the following form
pp = Gy Hy (0 (13)
where u is de%ined by eq.(5). Substituting eg's
(5) and (13) into (12), the following is obtained:
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Eq.(l4) is separable and may be rearranged to give
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Solutions to eq.(15) will be considered in
subsequent sections. The solution to eq.(1l6) may
be written as
g ¥ (z - cNt)
2 2.k
(eyg - <)
Hl = Hyo (17)
Consideration of eq.(17) shows that
2 2.k
w = cﬂnb/(cN - cz) (18)
Then, because ky = w/cy
2 2.k
¥ = kler- e)) (19)
and eq.(17) becomes
i(wt-sz)
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Boundary Condition at the Duct Airway/Liner
Interface.

Consider a thin limp sheet, of surface density o,

separating the liner from the duct airway. The
displacement of the sheet is given by
i(wt-sz)
[ (21)

At the inner surface of the sheet (next to the
moving medium in the duct airway) the resulting
normal acoustic velocity in the fluid is
a

B (22)
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Using eq’'s (2) and (4) the linearized momentum
equation becomes,

av v
Py [E + U, E] VP (23)
Introducing eq’'s (21) and (22) into (23) and
rearranging gives
2
= VRP/[PO(w-kNUO) ] (24)

In the liner, py is the complex gas density and
the linearized momentum equation in the liner at
the surface is

2
Pt = VP, (25)
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The acoustic pressure p in the duct airway and the
acoustic pressure p; in the liner must satisfy the
following equation at the sheet
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Substitution of eq.(24) into eq.(27) gives
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Evaluation of the Theory for a Rectangular Duct
Lined on Two Opposite Sides

Acoustic pressure distribution in the duct airway

Eq.(9) is separable into x and y coordinates so
that 6 = G,G,. For a duct lined on two opposite
sides (those’ in the y direction),

[P - Pylaurface 2Ry

Gx = cos(mzx/ﬂx) if m is even (29)

G, = sin(mmx/L,) if m is odd (30)
n . n

Gy - G1 cos(kRyy) + stln(kRyy) (31)

where m and n are the mode orders in the x and y
directions respectively. (The mode order
superscript will be omitted from now on but it is
implied that the expressions to follow refer to a
single mode). For even wvalues of n, the acoustic
pressure gradient at the duct centre line (y = 0)
must be zero. Thus,

G, = Glcus(kR ) (32)
For odg values of n ¥odd modes) the sound pressure
at the centre line is zero and

Gy - stin(kkyy) (33)
Using 2q's (4), (6),(17), (29), (30), (32) and
(33) the following expressions may be derived for
the acoustic pressure in the duct. For even modes
in the y-direction (and even modes in the x-
direction),

i(wt-
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and for odd modes in the y-direction (and even
modes in the x-direction),

i(wt-sz)
p = ipOGZSLn(kRyy)(w—UokN)cos(mxxfﬁx)Hoe (35)

To simplify matters, only the analysis for the
even n modes will be shown in detail, although the
final result for the odd n modes will also be
given.

Acoustic pressure distribution in the liner. For
a rectangular section duct, solutions to Eq. (15)
may be written as

Gz(y) - Gzlcos(kMy) + GIZSin(kMy)

At the duct wall (y = £ + d = L), the boundary
condition is that the pressure gradient in the
liner be zero. Thus,

G)22 = Ggltan(kHL}
Combining eq's (13), (20), (36) and (37) the
acoustic pressure in the liner may be written as
ky?)
(38)

(36)

(37)

i(wt-
P,- Gilﬂﬂo[cos(kny) + tan(kML)sin(kMy)]e

Boundary conditions at the duct airway liner
interface. Next are obtained two expressions for

the pressure gradient at the liner/duct airway
interface; one from the duct airway equations and
the other from the liner equations

Substitution of eq's (34). and (38) into (27) gives
an expression for the constants Gpp and Hy of
eq.(38) in terms of the constant Gl of eq.(34).
That is,
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Subst. eq.(39) into (38) and differentiating gives
iGlﬂnkons(mwx/Ex)
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From eq. (34)

gg - -ipoGlHocos(mwx/Ex) x
y=£
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The gradients in p and p, can be matched at the
liner surface using the continuity of displacement
through the thin impervious membrane. Thus from
eq's (26) and (28)
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Equating (41) and (42), substituting eq.(40) into
(42), using L = £ + d and rearranging gives

2
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kRytan(kRyﬂ) -

1- (a/pz)kﬂtan(knd)
The dependence of the mode order m in the x-
direction is included in the expression for kp..
Successive solutions correspond to successive even
values of mode order n in the y-direction. n=0,
the first solution, corresponds to a plane wave.
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e
o Y

y=£

(43)

A similar analysis may be undertaken for odd order
n modes with the following final result

2
(po/ﬂg)(1~MkN/ko) kHtan(kMd)
T - (o/p,) K, tan(k,d)

(44)

kaycot(kRyz) =

SOLUTION PROCEDURE

Equation (43) is solved for the propagation
constant ky, the imaginary part of which (when
multiplied by -8.69 and the duct airway width £)
gives the attenuation in dB per duct width.
Successive solutions for kN correspond to
successive even modes n in the y-direction. For
the rectangular duct, the results presented here
correspond to a mode order of m=0 in the x-
direction, as this is the most important case.

To solve equation (43) it is necessary to use as

input, the following quantities:

. normalized flow resistances Ry.d/p,c, and
Ri,d/p,c, for a length or thiczness d of
porous liner material in the radial and axial
directions respectively;

° normalised surface density o/p,f of the
impervious membrane;

. ratio of the liner thickness to the duct half
width d/f; and

o Mach number M of the mean flow through the
duct.

To find a solution for kN and ky of equation (43)
it was necessary to begin with a reasonably close
first estimate. Wassilieff (1987) showed that as
k,+0 a reasonable first estimate (for M=0 and m=0)
is given by

gy = [w0n/(L+ /)] + 10

kN can be Sound grom kRy us%ng Eq.(11l), the
relation kR = kR + (mr/£.)° and the porous
material axial propagation parameter (w/c,). This
latter quantity is derived from the normalized
flow resistance of the liner material (Bies &
Hansen, 1988). The complex density p, of the

liner material can be calculated from the normal
impedance and radial propagation parameter (w/cy)
(Bies and Hansen, 1988). kH can be found from kN
using Eq's. (15) and (19).

Solutions for higher frequencies are obtained by
incrementing the frequency by sufficiently small
amounts and using the solution for the previous
frequency as a first estimate of the solution for
the next higher frequency.

DESIGN CHARTS

Design charts are presented for various
combinations of the dimensionless input variables,
Rlydfpoco'_glzd/poco' o/pQE, d/f and M. Figures 2
to’ 6 contain curves covering a range of commonly
used liner configurations. Figures 7 to 9 contain
curves demonstrating the effect on the attenuation
rate of varying particular parameters.

To simplify their use, the charts represent octave
band frequency averages. To find a particular
octave band averaged attenuation for a given
configuration, an estimate of the frequency
parameter 24/\ is required, where X is the
wavelength of the octave band centre frequency.
The chart is then entered at this abscissa value
and the attenuation corresponding to the
appropriate curve is read directly from the
ordinate in decibels of attenuation for a length
of duct equal to the duct width, 22.

CONCLUSIONS

The theoretical work reported here demonstrates
that when calculating the attenuation of sound
propagating down a lined duct, the effects of a
mean flow in the duct and the effects of any
protective covering on the liner are important and
must be taken into account. The generalized
theory presented here was evaluated for ducts of
rectangular cross-section. However, the theory is
amenable teo evaluation for ducts of arbitrary
cross section.

The results of the theory for rectangular ducts
are presented here in the form of design charts
for a range of commonly encountered
configurations. For a duct lined on all four
sides, the total attenuation is the sum of the
attenuations obtained by considering each pair of
sides independently.
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Figure 2 Sound attenuation in a lined rectangular
duct. M = 0, Ry, = lsRly, a/p 4 = 0.01.
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Figure 3 Sound attenuation in a lined rectangular
duct. M =0, Ry, = %Rly, a/pyd = 0.1.
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Figure 4 Sound attenuation in a lined rectangular
duct. M =0, Rlz = Ls]:'{}_},, a/pOB = 1.0,
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Figure 5 Sound attenuation in a lined rectangular

duct. M = -0.1, Ry, = thy, /eyt = 0.01.
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Figure 6 Sound attenuation in a lined rectangular

duct. M = 0.1, Ry, = 4Ryy, o/p,2 = 0.01.
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Figure 7 Sound attenuation in a lined rectangular
duct. M=0, Ry, = ;iRly’ Rlyd/poco = 2.7.
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Figure 8 Sound attenuation in a lined recta-ngu'lar
duct. M=0, Rlyd/puco = 2.7, o/p,& = 0.01.
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Figure 9 Sound attenuation in a lined rectangular
duct. Ry, = LiRly, Rlyd/"’oco = 2.7, o/pyt = 0.0L.



