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ABSTRACT Turbulent kinetic energy:
Without using a turbulence model asymptotic theory r,du  d’k dB
for turbulent shear flows is able to predict the structure ——t et =g, =0 (2)
of the solution in the overlap layer between wall layer pdy dy’ dy
and defect layer. Since asymptotically wall-layer solu- __ viscous turbulent =~
tions are universal, turbulence models can be restricted production  diffusion  dissipation
to the defect layer, for which the overlap layer supplies
boundary conditions. Internal energy (enthalpy):
d dT g ®)
—|-a—+—|=0 3
INTRODUCTION dy dy pec
Asymptotic theory for turbulent shear flows consid- : o
ers the solution of the Reynolds—averaged Navier— Variance of temperature fluctuations:
Stokes equations for the limit of high Reynolds numb- q, dT d’k, dB
ers. Without using any turbulence model this theory t o g - o, SN @)
leads to certain conditions for the structure of the p ¢ dy a?  d 8
solutions, which turbulence models have to satisfy in P y y
order to be asymptotically correct.
According to asymptotic theory turbulent shear a) b)
flows near walls have usually a twoayer structure: the ) Uy . ) s A
wall layer, in which the viscosity is important and the s (L g Z4
flow shows universal features, ar(lid the defect layer,
where viscosity is negligible and turbulent models
become essential. M |—=uly) T ~uly)
Matching the two solutions found for each layer : J
separately is equivalent to a—priori statements about T TG Y O

the structure of the solution in the overlap region be-
tween these two layers.

In this paper the overlap regions of turbulent shear
flows will be considered from the viewpoint of asympto-
tic theory.

Examples will be Couette flows without and with
pressure gradient as well as equilibrium boundary
layers.

BASIC EQUATIONS

A turbulent Couette flow with constant physical
properties (no viscous heating, impermeable walls) is
considered according to Figure 1. There are given: H, p,
¢y ¥, Pr=vfa=0(1), 7, q, The distributions of
velocity u(y) and temperature T(y) are to be found.
Since the mean flow is independent of x, continuity
equation leads to v = 0.

Basic equations are :

Momentum:

(1)

fu T
v—+—| =0
d p
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Figure 1 Couette—Poiseuille Flow
a)T="T,%#0

b Two=0, 7wy

TWO-LAYER STRUCTURE OF FLOW FIELD

Although the system of four equations is not closed
without a turbulence model, formally the solutions can
be determined for the limit » — 0. Since the limiting
solution v = 0 does not satisfy the boundary conditions
at the wall, a singular perturbation problem has to be
solved, which can be done by using the method of
matched asymptotic expansions, see Van Dyke (1975).
The flow has (in the upper and in the lower half of the
flow field), a two—layer structure.

The characteristics of the two layers are:

Defect layer (core layer): v negligible, thickness O(H),
coordinate y, turbulent shear stress 7, = O(r,), turbu-
le?t) heat flux g, = O(q,),velocity u(y), temperature
T(y).



Wall layer: v important, & := §,/H = v/H yT,]p, thick-

ness 6 :=v/yT,]p, coordinate §' :=y/¢ turbulent
shear stress Ty =t0(fw), turbulent heat flux g, = O(q,),

velocity u(§'), temperature T(§").

In each layer the flow equations are simplified for v — 0
and solved separately.

OVERLAP LAYER

Matching of the two solutions rests on the existence
of an overlap layer, where both the core solution and
the wall-layer solution are valid in the limit » — 0. The
thickness of the overlap layer is small compared to H,
but large compared to §,. However, the overlap layer

has a finite thickness with respect to a coordinate ¥,

which lies between y and §* and is called intermediate
coordinate:

yi= (5)

0<ax<l

m‘lal'«‘.

Matching by using the intermediate coordinate is
called the intermediate matching principle, see Van
Dyke (1975), p. 91, Schneider (1977), p. 205.

Since the solution in the overlap layer must be
independent of v, Pr, 7./p, and q./pc, rSand also
independent of wall roughness) as well as independent
of H, the following relations must be valid for the
solution in the overlap layer for v — 0:

du
E = fu(?:"'tlp) (6)
R B
dT _
E = fa(y;'rt/pr qt/(p cp)) (8)
Eg = € = (3, 7o/p, 0/ (p Cp): kg) - (9)

GENERAL MATCHING CONDITIONS

According to T—theorem Egs. (6) to (9) can be
written in dimensionless form:

y du y
Lim — — =: Lim -= C = const. (10)
7, dy 1
A
=
§ |-tdT §
Lim — =: Lim — = Cy = const. (11)
pc,
E§ § k
Lim —2— =: Lim — = C,_ [Lim (12)
;132 € T
D
7
e 5 *
€ ¥ kg —
W in ecufum] oo
I

12.2

where

= lim
y fixed
=0

Lim:

(14)

refers. to a limiting process

in the overlap layer (¥
fixed). (

These are the general matching conditions, see aiso
Cebeci, Bradshaw (1984), p. 166, p. 336. It is worth
mentioning that the different length scales, e.g. mixing

length 1, dissipation length I_ etc, have been defined

such, that they are proportional to § in the overlap
layer. They are not turbulence models.

PHYSICS IN OVERLAP LAYER
It can be shown, that the following limits hold:

dB dBy
Lim—=0; Lim—=10 (15)
dy dy
From these relations the following statements about
the behaviour of the solution in the overlap layer for the

limit € — 0 can be made:

1) In the overlap layer turbulence production is equal
to turbulence dissipation. An equivalent statement
for the variance of temperature fluctuations is
valid. Therefore, this layer is called equilibrium
layer.

From Egs. (2), (4) and (15) follows:

T du (16)
Lim - — = Lim 7 16
p dy %
q dT
Lim — —=Lim & . (17)
p e, d§

2) In the overlap layer the turbulent kinetic energy is
proportional to turbulent shear stress and the
variance of temperature fluctuations is proportional
to turbulent heat flux. Therefore, one says, that in
the overlap layer there exists siructural equilibri-
um, see Townsend (1961).

From Egs. (16), (17), (10) to (14) follows:

Tt
Lim k = Cy Lim — (18)
o
g
. . |? %
Lim kg = Cy g Lim ~—— (19)
t
o

3) In the overlap layer the four length scales, defined
by Egs. (10) to (13), are by definition proportional
to §. Mixing length I and dissipation length I, are
identical. The turbulent Prandtl number is con-
stant.

From Egs. (10) to (14), (16) and (17) follows

Limi = %: == Lim I, , (20)
Lim I, = = =Lim{ 21
3 %E i m leg ( )



(22)

The universal comstants C,, C. etc. are given in
Table 1. In summary, the structure of the solution in
the overlap region is known a priori.

: = O 2
Lim Prt _U:_E_ const

Blowing/ Viscous Variable
Normal Suction Heating Properties
Parameter Parameter | Parameler
Y Ec_ 4
3 1 1 . 1 Lo
G, =6, % E(H'" Fvo) X 1 ﬂquFpn)
_ 1 1 . 1 1 s
Co=Cyp % ?G(H-v'(;m) P ;n{l—ﬁquf"m)
Table 1 Constants of matching and structural

equilibrium.
(k=041; rc9=~‘9i47 16, =009;c,81;
Cy=1/ye,» k" ; Cyq = 1/C.0)

Although the derivations have been made for a
Couette flow, the results are universal. The pressure

gtadient is in the limit & — 0 a higher—order effect as
long as 7, # 0. The wall curvature is also negligible for
curvature radii R = O(H) >> §,. Therefore, the wall
layers of all turbulent shear flows near walls are identi-
cal with the wall layer of the Couette flow in the limit
v — 0 for 7, # 0, see Mellor(1972).

Since the behaviour of the walldayer flows is suffi-
ciently known or can be determined universally, turbu-
lence modelling and numerical calculations can be re-
stricted to the core layer (defect layer). The general
matching conditions will serve as boundary conditions
for the solutions in the core layer. A thousandfold
repeated computation of the universally known wall
layer over and over again is unnecessary and senseless.

In the following the effects so far neglected (blow-
ing/suction, viscous heating, variable properties) will be
investigated with respect to their influence on the
universal wall layer and particularly on the overlap
layer. The parameters characterizing the various effects
are ia.ssumed to be small. The results are summarized in
Table 2.

The dimensionless variables have been introduced
by using the following reference values:

length: H; velocity: friction velocity u, := 47 o/pg ;
shear stress and pressure: 7., ; temperature: friction
temperature T, := — [q,/p ¢, u,]; ; heat flux: qg, .

Dimensionless parameters are:

v =V_w , Ec_:i= uf_ B =E
W TTC, I'r ¥y To,
e _7 _*

VL BEEY

f’I‘he matching condition (10) reads in dimensionless
orm

7 du’ y du'
S ——=lim —— (23)

1i+m -
Y*OOJTdy Jﬁdi yﬂOJTtdy
P s P

]
nd Egs. (11) to (13) accordingly.

y; du®

¥ fixed
E—=0
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BLOWING AND SUCTION

In order to keep the Couette flow independent of x,
at the lower wall fluid is injected and the same amount
of fluid is sucted off at the upper wall or vice versa. It is
worth mentioning, that in the overlap layer, the distri-
butions of velocity and temperature are ~ In"y, see also
Rotta (1970), 7, k, q, and ky are ~ In y. The constants
in the matching conditions ?Table 1) also depend on
Vv, (due to convection), whereas the coefficients F, and

vo Tollow from a turbulence model for the core ia.yer
(k—e-—model: F., = G,,=-2.7; Rotta—method, see
Rotta (1986): F o = —4.6). It is interesting to note that
for this problem in the textbook by Tennekes, Lumley
(1972), p. 55, four different approaches are offered.
Unfortunately, all four are asymptotically not correct.

VISCOUS HEATING

By taking viscous heating into account the heat
flux is not constant, but g, ~ In y, whereas the tempera-
ture is §" ~ In"y, see also Rotta 6959).

VARIABLE PROPERTIES

It is assumed that density p, viscosity 7, and heat
conductivity A are functions of temperature. Since only
small heat transfer parameters ﬁq are considered, it is
sufficient to use the property laws:

a=1+Kaﬁq9+;Ku:= [%%%]o;azp,n,)\.

Again, the matching constants C,, C, etc. depend
also on f K, (due to convection), see also Valker et al.
(1987). Like fn the case of blowing/suction u” and 6 are
~ In"y, whereas 7,, q; are ~In y, see also Rotta (1959).
The main effects are due to density variations.
Variations of viscosity and heat conductivity lead only
to additive constants in the distributions of u” and 6"

ZERO WALL SHEAR STRESS
Couette—Poiseuille Flow

By superposition of a proper pressure gradient to
the Couette flow a special Couette—Poiseuille flow can
be produced such that the wall shear stress at the lower
wall is zero. In this case the general matching condi-
tions, the statements about equilibrium layer, and
structural equilibrium are still valid. It follows for the
overlap layer, i.e. for the limit y — 0:

ey ey ey Iy vy, e ny? (24)

Instead of friction velocity the characteristic veloci-

ty 1s now
u o Z(ain 1/3
8= g :

For details see Gersten (1987). Most functions
undergo a drastic change in their structure in the transi-
tion from T #0 to 7, = 0. There are exceptions: the
length seales 1, 1, as well as the structural constant C,
and matching constants C,, , C, .

(25)

All existing models are not able to describe the
drastic changes when approaching the point 7,=10
(separation), because the model constants have to be
different in the cases 7,#0 and 7,=0. A turbulent
model based on equations for 1 and C, is therefore
proposed.



EQUILIBRIUM BOUNDARY LAYERS

The asymptotic theory for turbulent boundary
layers has been given by Mellor (1972). The wall layer
is locally identical with the wall layer of the equivalent
Couette flow with the same wall shear stress. All results
about the overlap layer are also valid. A particular
family of turbulent boundary layers is characterized by
self—similar solutions of the defect layer. They are
called equilibrium boundary layers and are character-
ized by two dimensionless parameters, the Clauser
parameter § and Reynolds number Re, (or shape para-
meter Hy, or pressure gradient parameter m). Figure 2
shows the shape parameter as function of m and Re, .
There are two different curves for the limit Re; — oo .
The line OB refers to cases 7, # 0, where after Mellor
(1972) the boundary layer has a two-layer structure
with a logarithmic velocity law in the overlap region.
The curve BA refers to cases 7, =0. After Klauer
(1989) these boundary layers have a three—layer struc-
ture, see also Melnik(1986). The layer closest to the
wall is again locally identical with the wall layer of the
particular Couette—Poiseuille flow with 7, =0, where

-0.4 -0.3 -0.2 01 m 0
T.UUU Ul T T
1'H21 reversed flow
A
075 p——————— g ——— —
no reversed
flow
0.50F /
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Rey=oo/{A_ 77 103
0.25 / e f f 5
; /! 4 7 1U
',."’, 1/ I’ ] "}7
0 B ’I’JI, rl’ / !1 /
B=os’ 105 1 05 01 0
Figure 2.
By = by = (5 DA ) = ()]
= ;I = s = )/ T
Oﬁ: f,og}uithmic vlelocityl!aw, two lalye?s.

AB: Square-root velocity law, three layers.

the overlap layer has a square—toot velocity law. Again,
no existing turbulence model is able to describe the
transition form 7_ 40 to Ty = 0 without changing the
model constants. Here, again, a 1-Cy—model could be

the solution.
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Table 2 Solutions in overlap layer (boundary condition for core layer)
Ugo = ljm [llny‘+c i O =1ljm [1—1ny‘+ce(p;)
£ Ky
Y “m ¥ 4w

Fvo § Gvo i Fpo F GPO depend on turbulence model, all other functions are universal.
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