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ABSTRACT

The unsteady daytime circulation in a reservoir sidearm
caused by differential heating is modelied by the natural
convection of a fluid contained in a narrow infinite wedge,
Internal heating by the absorption of solar radiation is mod-
elled by Beer’s law. The principal driving mechanism for
the flow is a heat flux applied along the sloping bottom. The
bottom heat flux is calculated from the amount of heat that
is not absorbed by the water column. Asymptotic solutions
valid for small bottom slopes are found for the flow and tem-
perature fields. Only the lowest order solutions are found
here so there is no correction for the effect of convection on
the temperature field.

§1 INTRODUCTION

During the daylight hours, the shallower regions of a reser-
voir sidearm absorb more heat per unit volume than the
deeper parts. This can generate a circulation in the sidearm
that may be significant for the transport of pollutants or
other substances introduced at the shallow end of the side-
arm. During the night, an opposite effect occurs with the
shallow regions losing more heat per unit volume leading to
a circulation in the opposite direction. Fluid contained in
an infinite wedge subject to an internal source of heat as
well as a boundary heat flux is used to model the daytime
circulation

Convection in triangular cavities, particularly when driven
by internal heating or boundary heat fluxes, has received
relatively little attention in the literature. Unsteady nat-
ural convection in a rectangular cavity driven by internal
heating has been examined by Patterson (1984). Poulikakos
and Bejan (1983) investigated the steady flow in an attic
space and suggested that their results could be used in the
geophysical context. However, the time taken for the cir-
culation in a sidearm to reach steady or quasi-steady state
is comparable to the time scale of the forcing (Monismith
and Imberger (1986)) so it would appear that the reservoir
sidearm problem is intrinsically unsteady. Typical sidearms
have small bottom slopes (~ 1072). This fact can be ex-
ploited to obtain asymptotic solutions for the temperature
and velocity distributions.
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§2 MATHEMATICAL FORMULATION

The flow in a reservoir sidearm is modelled by the flow
contained in an infinite wedge lying between y = 0 and
y = —Az in the (z,y) plane. Temperature differences in
a reservoir are typically small so the Boussinesq approxi-
mation is appropriate. Thus, the equations that are to be
solved are

Uy + Uty + vUy = —po/po + vV u (1)
vt + uvz +vvy = —py/po + vV + ga(T —Ty)  (2)
Ti + ule + vTy = V2T + Q(z,y,1) (3)

s+ v, = 0. (4)

where u and v are the horizontal and vertical velocities,
T is temperature, p is pressure, v is the kinematic vis-
cosity, & is the coefficient of thermal conduction, e is the
coefficient of thermal expansion, gy is the relerence density,
Ty is the reference temperature, Q(x,y,1) is the tempera-
ture source with units of *C's™! ‘and independent variable
subscripts denote differentiation. If the intensity of solar
radiation incident on the water surface is I, and the ex-
tinction coefficient for Beer's Law is 7 then, assuming no
reflection from the bottom boundary, @ is given by

I
Qz,y,t) = %e“” = Qone™. (5)
P

Note that. @ has no horizontal dependence and so this in
itself will not drive any flow. The driving force for the flow
comes from the next assumption; the heat not absorbed by
the water column is absorbed by the bottom of the sidearm
which immediately releases this heat as a boundary tem-
perature flux. This statement is embodied in the boundary
condition

dT 1 1 ;
Ef\"; = W(Ty + AT_,_-) = —;lef\‘:’_‘-‘n'l on y= —Az
(6)

where 72 is the direction normal to the sloping bottom. For
this model it is assumed that heat exchange between the
water surface and the air immediately above is negligible
hence T, = 0 on y = 0. Boundary conditions for the
velocities v and v are u = v =0 an y = —Az and U=
To/tty v =10 on y =0 where 7, is the (known) stress at the
water surface which, for simplicity, is assumed to be zero in
this work. Initial conditions are simply that at ¢ = 0 the
fluid is at rest and is a uniform temperature Tj.
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§3 NON-DIMENSIONALISATION

The geometry of the problem imposes no natural length
scale and so the vertical coordinate must scale like y ~ 77",
The geometry then suggests that @ ~ (An)~". The flow in
the cavity is driven by temperature gradients which suggests
that the appropriate time scale is ¢ ~ (x7?)™*. Thus, via
(3), T — To ~ Quo/(xn). This scale for the temperature
difference along with (2) gives a scale for the horizontal
pressure gradient which can be used with (1) to give a scale
for the horizontal velocity, namely u ~ AGrxn, where the
Grashof number is given by

Gr=gaQQ )

w3t

Lastly, the continuity equation (4) gives v ~ A*Girry

Using the above scales to non-dimensionalise (1)—(4), elim-
inating p and introducing a stream function ¢ yields

Yoy + APizs
+ APGr (Patbyuy — Yytuse + A® (Yatbuzy — byhans))
= 0 (uyyy + 24%0eyy + A'ozez) + T (8)
and
ar ., ,
57 FAGCr (—hTe+¥:Ty) = AT + Ty + e (9)

where u = —t,, v = 1., ¢ = /& and all variables are
now non-dimensional. The non-dimensional boundary con-
ditions are

Y =1hy, =0, T,=0, ony=0, (10)

T I
b=t =0 ZEEE =y =2, (1)
Equations (8) and (9) with boundary conditions (10) and

(11) have no steady state since heat is continuously being
added and none is allowed to escape.

84 ASYMPTOTIC SOLUTION

Equations (8) and (9) are not directly soluble; Liowever for
A < 1 asymptotic solutions are obtainable. Following Cor-
mack et al. (1974), T and ¢ are expanded as a sum of
powers of A%,

=710 4 4270 4 Afiff(-l) R (12a)
W =0 4 AZHE L AP 4o (120)
Substituting these expressions into equatious (8)~(11) and
equating like powers of A? yields a sequence of linear equa-

tions that can, in principle, be solved recursively. For the
sake of simplicity only the O(A”) equations are solved here.

The O(A") equations are

iy = oo, + T (13)
T =1 + ¢ (14)

with boundary conditions

PO =y =0, T =0 ony=0, (15)
0 = ubg)) =0, T!ED) =—eF ony=-z (16)
and initial conditions
p@ =0, T =0att=0 (17)
The solution for T@ is

TO =t/z —e¥ + éyifs: +y+ef3+(l—e")/z

— % z an(2)e~ "D cos(nry/z). (18)

n=1

where the a,(z)’s are given in the Appendix. This solution
allows for vertical conduction only and thus has no cor-
rection for convection. It would be necessary to find T
before convective effects on the temperature field would be
evident. For simplicity, only the large time solution for $©@
is found here. This simply means neglecting the series part
of equation (18). The equation for () is then

Yy = oWy +at + by +e (19)

where a = —1/z%, b= —1/(22%) and e=1/3— (1 —e™" —
ze~7) /2% Equation (19) with boundary conditions (15) and
(16) can be solved by taking Laplace transforms in ¢. The
analytical details are tedious and only the solution is given
here. This solution is

y(y + z)*
PO =— igéSO—c"") [60c(at + ¢)(2y — )
+ 4ab(2y® — dzy? + 62’y — 32%)
+ a(4y® + zy® - 62%y + 327)]

+ 3 fa, s Br)eo = (20)

n=0

where f(z,y;B,) is given in the Appendix and the 8,’s are
the non-zero positive roots of the equation B, = tanf,.
Even though % as given by equation (20) satisfies the
initial condition, it is only a valid solution for ¢ greater
than the e-folding time of the neglected terms in i),

Figure 1. O(A°) temperature contours at ¢ = 1.0 and
Zmae = 5.0. The contour interval is 4 x 1071, The dashed
line represents the limit of the conduction dominated tip
region as derived in §3.
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Figure 2. O(A°) streamlines at t = 1.0 and Zpy,.. = 5.0.
The contour interval is 2x10~%. The dashed line represents
the limit of the conduction dominated tip region as derives
in §5.

§5 DISCUSSION

Only O(AY) solution for T' and ¢ are found here. This has
the consequence that the effect of the flow on the tempera-
ture in the sidearm cannot be determined. From the scaling
in §3 the effect of the flow on the temperature is O(A?) .

Figures 1 and 2 show the large time, O(A®) temperature
distribution and flow field. Note that the heat flux at the
sloping bottom of the sidearm decreases exponentially with
z and so some distance from z = 0 the bottom is effectively
insulated. Thus the flow in the sidearm is not only driven
by the mean horizontal temperature gradient which is only
significant near £ = 0 but also by the insulated sloping
bottom in conjunction with the stable stratification in the
deeper parts of the sidearm; the turning over of the hori-
zontal isotherms to satisfy the boundary condition results
in a flow up the slope (Phillips (1969)).

It can be seen from Figure 1 that near z = 0 the fluid is
warmer at the bottom than at the surface, leading to the
possibility of instabilities. This is currently being investi-
gated.

It is clear from equation (18) that T®) is singular at 2 = 0.
This is not surprising since heat is not allowed to escape
at the boundaries and horizontal conduction is an O(A?)
effect. However, it can be seen from Figure 2 that the ve-
locities become small in the tip region. This suggests that
there is a region near the tip where the heat transfer is dom-
inated by conduction and the isotherms are nearly vertical.
By using equations (1)—(3) and (5) it is possible to derive a
scale for the horizontal extent of this conduction dominated
region. Suppose that the conduction region is horizontally
confined by 2 ~ [. Balancing conduction with the source
term in equation (3) gives a scale for the temperature dif-
ference in this region

AT ~ L QonP. (21)

Using this scale and balancing buoyancy and pressure in
equation (2) gives rise to a scale for the horizontal pressure
gradient vp./po ~ AgaQol?/k. This scale for the the hori-
zontal pressure gradient with equation (1) yields a scale for
he horizontal velocity u,

u~ Gre? A2'n® v (22)

where Gr is given by equation (7). For conduction to
dominate heat transfer, vertical conduction must act more
rapidly than horizontal convection to give rise to vertical
isotherms, that is

vertical conduction kAT [(AD)?
~ TUAT]I

p)
horizontal convection =1 2
Substituting the velocity scale (22) into equation (23) and
rearranging yields a scale for I, the horizontal extent of the
conduction dominated region, namely

Ip ~ A} (é) (24)

Using A ~ 107% and the usual typical values for the other
parameters gives Ip ~ 0.25. This region is shown in Fig-
ures 1 and 2 and is consistent with the behaviour of the
temperature and flow there.
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APPENDIX

The coefficients in equation (18) for T© are given by

@2 1—(-1)"e"*
an(e) = (ar)? 1+ (nx/z)?

The coefficients in equation (20) for () are

f(xvy;ﬂn) = $2 S]Ilﬁ [(5‘( &, Bﬂ) +zgy( m’ﬁn)) sn"-(ﬁnylml
- (ﬁn cosﬂn g(_xjﬁﬂ)/z + sin ﬁn gﬂ(—xlﬁﬂ))y] (Al)

where
o0 50) =2 | 2 - (2 + ) ] (con(Buaf) - 1)
(”y 3 /2) (b fajRp L B,. (42)

and a,b and c are defined in §4.
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