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ABSTRACT

We have derived consistent and general equations de-
scribing the motion of two phases through a contraction.
One phase is continuous, the other dispersed and the range
of density ratios is wide. The single-phase limit and tle
homogeneous-flow limit are contained within our equations.
Comparisons between modeling and experimental data for
two density ratios of 1000 and 1.26 showed very good agree-
ment in predicting pressure from input flowrates in vertical
flow.

INTRODUCTION

Flow systems involving a mixture of gas and liquid or
liquid and liquid occur commonly in the petroleum indus-
try. Development of a flowmeter capable of extracting the
individual flowrate of each of two components in a two-phase
mixture irrespective of their density ratio or the inclination
of the pipe is of great importance. One of the fundamen-
tal requirements for designing such a device is to formulate
correctly a mathematical model for a two-phase flow system
with a wide range of density ratios.

The mathematical model described here is a unified
model being able to treat air-water as well as oil-water mix-
tures. It is also based on the interstitial velocity, i.e. the ve-
locity of the unperturbed liquid between the bubbles, rather
than on the average velocities as is often done in the seg-
regated or two-fluid models. General-purpose models used
for engineering applications today are two-fluid models. But
these models do not allow for the effects on the flowrate
of the liquid caused by the presence of flowing bubbles or
droplets, and in particular by the relative velocity between
the bubbles and the liquid. The approach and derivation of
the equations of motion reported here follows and extends
that given in [1] who considered these effects.

DEFINITIONS AND ASSUMPTIONS

We consider statistically stationary flow in a vertical
pipe of varying cross-sectional area A(z), where the z-axis
is streamwise vertically up the pipe. Tt is assumed that the
bubbles are rigid spheres all of the same density py and vol-
ume V; and with a small diameter compared to the pipe
diameter. The word ‘bubbles’ is to be thought of here as
the dispersed component of the flow and refer to air bub-
bles in water flow or oil drops in water flow. There is no
explicit effect of liquid- and bubble-density variations, un-
steady drag, liquid turbulence generated by mean shear and
bubble wakes, the bubble-wall and liquid-wall friction forces.
The velocity profiles are flat, akin to a turbulent single-phase
pipe flow. It is further assumed that all bubbles at a given
cross section move with the same velocity.

In this one-dimensional system, all flow variables are
taken to be spatial averages over the pipe cross section and
are dependent on z. We use the subscript b or B to refer to
the dispersed phase (bubbles) while the subscript { or L refers
to the continuous phase (liquid). If there are n bubbles per
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unit volume, the void fraction for example, normally defined
as the ratio of the volume of the light phase over the total
volume of both phases, is simply €, nV, and the liquid
holdup is just e, =1 — €.

Bubbles are assumed to move with a velocity u. The
bubble-phase superficial velocity up is given by un = Q/A,
where Qy is the volume flowrate of the dispersed phase. The
average bubble velocity is then

_ Qv _um
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Note here that (up) = u, since all bubbles are assumed to
move with the same velocity at a given cross section of the
flow.

For the liquid, the superficial velocity uz is given by
ur = Qu/A, where @ is the liquid volume flowrate. The
liquid average velocity is then
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The concept of the interstitial velocity*u; serves to rep-
resent the liquid velocity in the space between the bubbles,
similar to a background velocity field determining the mo-
tion of any bubble in a low void fraction mixture. When a
body moves uniformly through an infinite volume of incom-
pressible inviscid fluid at rest, it induces a drift in the fluid
such that the drilt-volume of fluid is equal to C,,V, where
V is the volume of the body and Cp, is the added-mass co-
eflicient. For a rigid splere C,, has the value 0.5 (see [2]).
For the present formulation, bubbles are modelled as rigid
spheres and so the virtual-inass concept must also be intro-
duced. Then the liquid flowrate across a surface area A is

®3)

Combining Eq.(2) and (3), the liquid average velocity can
now be rewritten as

(w) = (2)

Qr=urA=[(1—-ep)w + e&Crmlup —w)]A4,

(4)
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EQUATIONS OF MOTION

Each component of the flow obeys its own mass-conser-
vation law stating that the flowrate, once specified at the
inlet, is constant throughout the pipe for steady flow and
constant densities, i.e.

dx
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If there are n bubbles per unit volume, the momentum
equation for the dispersed phase in an unsteady liquid flow
can be written in terins of a generalised force equation as
follows (see [3]):

(Aup) = 0= —(Auz) .



Dyup

D1 (6)
where Iy is the resultant force acting on a rigid spherical
bubble of volume V, moving at a velocity up. The material
derivative is defined as

€Pb =l ,
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If a bubble Reynolds number is defined in terms of the bubble
diameter and slip velocity, we first consider the inviscid flow
around a splerical bubble as in [3]. This is an appropriate
model when the bubble Reynolds number is large (> 1000,
equivalent to a diameter of 5mm and a rise velocity in water
of 15 to 25¢m/s) and the water is pure. If the bubbles are
also sufficiently small that there is local homogeneity in the
flow velocity gradients, the bubble velocity will depend only
on the interstitial liquid velocity and its first derivatives ([3])
and we then assume that drag can be added to the forces de-
rived for inviscid flow and for a sufficiently low void fraction,
that bubble-bubble interactions can also be neglected. [
can thus be decomposed into four uncoupled contributions,
Fy = Fp + Fg + Fy + Fa, which are now described.

The force Fj, due to the pressure gradient in the liquid
far from the bubble is given by

i y) ,
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where p is the undisturbed liquid pressure, g is the gravita-
tional acceleration and
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Tle gravitational force F, exerted on the bubble in the
absence of the liquid is simply Fg = —ppVjg.

The virtual-mass force Fy is the inertia force due to
the local acceleration of the added mass of liquid travelling
with the bubble (inviscid drag force), and is written as

Deyuy D )
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The actual drag force Fq on the bubble is due to the
viscous stresses changing the pressure distribution around
the bubble; neglecting the non-uniformity and unsteadiness
of the surrounding flow, I4 can be expressed in terms of V4,
the terminal rise (or fall) velocity of a bubble in an infinite
stationary liquid (see [3]), as

Fu=—pViCon (10)
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Fa=—|Ao|Vhg
wlere Ap = py— pr. Combining the above results and assum-
ing steady flow, the momentum equation for the dispersed
phase becomes
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In the limit py < p (ie. for a gasliquid system) flow, the
one-dimensional momentum equation for a bubble reduces
precisely to Eq.(28) in [1].

The liquid average pressure {p) can be written in terms
of the interstitial pressure, pi, i.e. the liquid pressure befween
thie bubbles on a surface across the flow, as

p1Comes(us — w)?

% (13)
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[ey.(13) together with Eq.(4) clearly illustrate the difference
in going from an average-variable formulation to Eq.(12) by
introducing extra terms of order €.

It becomes apparent that Eq.(12) is identical to an
werage-variable equation in the cases when e, tends to zero
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(single-phase limit) or when the slip velocity uy — u; is zero
(homogeneous-flow limit).

The momentum-balance equation for the liquid com-
ponent can be derived mathematically by integrating the
Navier-Stokes equations over a fixed control volume of fluid
containing and possibly intersecting bubbles (see [1]). The
final result is an equation similar to that for the dispersed
phase, where the rate of change of liquid momentum is equal
to the sum of various forces acting on the control volume:

du 1dA du du
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Here also, it is easy to see this equation reduces to Bernoulli’s
equation when the slip velocity vanishes (homogeneous-flow
limit) as well as for the single-phase flow limit (&, = 0).

To arrive at a two-component pressure equation, the
two momentum equations above are combined by eliminating
the drag term between the two equations. This leads to:

d
dL: + (cpt + cupp)g =
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Similarly, a velocity equation can be derived by eliminat-
ing the pressure gradient between the two momemtum equa-
tions:
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It is worth noting that Eq.(14) reduces to the single-phase
Bernoulli equation for €5 equal to zero and collapses to a
“two-phase Bernoulli equation” when uy = uj, with p; being
replaced by the mixture density pm = esps + 1.

EXPERIMENTS AND COMPARISONS

The experiments described in this paper were perfor-
med in a multiphase flow loop in Schlumberger Cambridge
Research. The working section is made up of 76.2mm nomi-
nal bore clear acrylic plastic pipe. The generated air bubbles
or oil droplets were about 5mm in diameter which gives a
ratio of pipe size to bubble size roughly around 15.

In order to fully characterise the pressure behaviour in
the straight and contracted sections, the pressure variation
along the length of the pipe was measured using eight tap-
pings (Fig.1), of which three provided a pressure drop mea-
surement in the straight section and across the contraction.
I'he tappings themselves could be connected selectively to
a single differential pressure transducer by means of a fluid
switch, Pressure profiles along the pipe were measured for
an air/water or an oil/water mixture and for a range of su-
perficial velocities uz and up. The flow conditions were cho-

(2w — epup) — mC»'m(m:C—fi%_'El

sen to cover a representative range of void fractions, and to
allow parametric comparisons (for example constant liquid
flowrate with varying gas rate). The conditions tested are
listed in Table 1.

Pressure profiles along the pipe as predicted [rom the
model are shown in Tig.2 and Fig.3. On each graph the
associated experimental points are also shown. In general it
can be seen that the agrecement is good, both for air/water
(Fig.2) and oil/water (Fig.3) cases. Some detail effects are
present in Lhe experiments which are not represented in the
model. For example the ‘overshoot’ in the pressure at z = 1.0
in each case is the sign of a small flow separation which occurs
at the end of the conical contraction due to the sharp corner

leading into the subsequent straight section of pipe. This



Table 1: Conditions for pressure measurements

Water superficial | Air superficial | Oil superficial
velocity (m/s) velocity (m/s) | velocity (m/s)
0,97 0.65
0.97 0.4
0.97 0.15
0.48 0.47
0.09 0.08
1.35 0.37
0.583 0.391
0.291 0.383
0.293 0.205
0.770 0.096
0.088 0.089
0.215 0.494

would obviously not be scen in the one-dimensional model
since the tappings are not actually modelled numerically but
the pressure is obtained as a field throughout the pipe.

Fig.4 shows the percentage difference for the model
predictions relative to the experimental pressure drops across
the contraction versus bubble void fraction; the left graph is
for the air/water cases and the right one for the oil/water
cases. It is clear that the model is accurate to better than
10% up to 30% bubble void fraction. In the dilute region
(<10%) the agreement in both cases is excellent. Since
the model assumes no bubble-bubble interactions other than
those caused by the change in interstitial velocity, it is not
surprising that above 20% bubble void fraction there is an
increasing discrepancy between model and experiment. The
variation seems to be quadratic, consistent with the limita-
tions of the model. Note also that the accuracy within 5%
for the single-phase cases quantifies essentially the variabil-
ity in the experimental data relative to Bernoulli’s equation
for loss-free flows. It is also apparent that the experimen-
tally derived single-phase discharge coefficient of 0.984 (i.e.
an underestimate of 1.6%) is consistent with the zero-void
fraction limit of the two-phase results.

CONCLUSION

We have derived a consistent and general set of equa-
tions to describe the motion of two phases in flow through
a contraction. One phase is continuous, the other dispersed
and the range of density ratios is wide. Given the density
and flowrate of each component of the flow, the pressure,
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Figure 1 Coniraction geometry and pressure tappings.
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velocities and void fractions can be computed at any loca-
tion along the pipe. The single-phase limit as well as the
homogeneous-flow limit are both contained within our set
of equations. The full mathematical model requires only
the terminal rise velocity of a single bubble, ;. This is in
contrast to simpler models where extensive empirical cali-
brations are required. The use of the interstitial velocily
and virtual-mass concept removes the empiricism between
the relative velocity, the void fraction and the terminal rise
velocity.

Comparisons with experiments demonstrate that, al-
though the model is one-dimensional and neglects local bub-
ble-bubble interactions, it is nevertheless robust in dealing
with vertical flow and a wide range of density ratios. V; was
obtained from standard correlations for the fluids used and
was not artificially adjusted for these specific experiments.
Both when p = 1000 or p = 1.26, the agreement between
the mathematical predictions and the experiments was good
in the vertical flow cases. The implication of this conclusion
is that the model should perform well at any intermediate
values of density ratio.
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Figure 2 Liquid pressure versus streamwise coordinate = for
air/water cases. O water wy, in the upstream section 1.35m/s,
air up in the upstream section 0.87m/s; O water 0.97m/s,
air 0.65m/s; I\ water 0.97m/s, air 0.4m/s; 4+ water 0.9Tm /=
afr 0.15m/s; x water 0.48m/s, air 0.47Tm/s.
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Figure 3 Liquid pressure versus streamwise coordinale z for
oil/water cases. O waler uy in the upstreamn section 0.58m/s,
oil up in the upstream section 0.39m/s; O water 0.29m/s,
0il 0.38m/s; A water 0.29m/s, oil 0.21m/s; + water 0.77m/s,
oil 0.096m/s; x water 0.22m/s, oil 0.49m/s.
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Figure 4 Percentage difference for the model predictions relative to the experimental pressure drops across
the contraction versus bubble void fraction for air/water cases on the left and for oil/water cases cn the
right.

%.32



