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ABSTRACT

Examples are given of two distinct ways in
which thermal runaway, coupled with propagation
of compression or shock waves, can be established
in combustible gas mixtures. Various features
such as unsteady induction domains, quasi-steady
combustion waves and reaction-induced shocks are
identified, using a mixture of asymptotic analysis
and numerical computational methods, all with a
view to understanding the processes through which
detonation waves evolve. It is demonstrated that
the unsteady induction domain, in which
disturbance amplitudes are small, exerts a
powerful influence on the way the fields develop.

1. MOTION PRODUCED BY HEAT POWER

Suppose that energy is transmitted by heat
conduction through the fixed impermeable surface
x = 0 into a plane half-space of cold combustible
gas in x> 0. After a brief interval of time,
0< t< td (cf Fig.2), during which heat-

conduction is the dominant process within a
thermal boundary-layer adjacent to x = 0, a plane
shock wave emerges from this conduction-dominated
layer and propagates out into x > 0 as the
precursor to some more-or-less intense combustion
activity. The heat-power-input is

chosen so as to give rise to a precursor shock
that lowers induction (or, 1oose1y,_§gnit10n)
times by factors of the order of 10 ~; gas ahead
of the shock is thereby chemically inert for all
practical purposes. Fig. 1 exhibits instantaneous
temperature T and pressure p profiles which have
been computed as numerical solutions of the
Navier-Stokes equations for the situation
described above (Clarke, et al, 1986, 1989), with
combustion taking place via a simple irreversible
first-order Arrhenius reaction. The profiles

are illustrative of the situation over a range of
times prior to an "explosion" time te’ as shown

in Fig.2. Apart from the precursor shock PS,
Figs.l and 2 identify an induction domain I, a
combustion wave CW (within which there is
significant increase of temperature and associated
decrease of pressure), and a plateau of
substantially uniform conditions followed by the
thermal boundary-layer TBL adjacent to x = 0.

Fig.3, which is lettered to correspond with
Fig.1l, is a picture of p versus v, the specific
volume, through the whole field whose profiles
are depicted in Fig.1l. The points 0 and Sy, which
represent the ambient, cold, atmosphere and the
immediate post-precursor-shock condition,
respectively, 1ie on the unreacted Hugoniot curve
1%(1} whose "origin" is 0. It can be seen that

the hot, relatively low-pressure, parts of CW

adjacent to point E 1ie on a straight 1ine-ﬂF,
which 1ntersects?%o(l) at point S. The

computations confirm that all of the reactant
material is consumed by the time point E is

reached and, consistent with this, it can also be
seen that point E in Fig.3 Ties on the "all-
reacted" Hugoniot curve whose "origin" is 5, namely

ﬁ%(O).

Since Fig.l illustrates a solution of the
Navier-Stokes equations it is to be anticipated
that precursor shock OSa has a continuous structure

and this is evident from the figure. The fact
that the shock is rather thick in relation to the
spatial extent of both I and CW, which are regions
of primary influence of the chemical reaction, is
indicative of the fact that general diffusive
effects for mass, momentum and energy have been
exaggerated. It is well known that the existence
of several disparate time scales creates a

problem in the numerical modelling of situations
for which they occur (Oran and Boris, 1981), and
it is to alleviate such problems that Clarke, et
al, (1986), (1989) chose to magnify the diffusive
time scale. However, despite this, the results
obtained by these authors show that, away from

the interiors of shock OSa and boundary-layer TBL,
even the magnified diffusive effects are small
enough to be neglected. The field from Sa’ through

F, and on past E towards the wall at x = 0 is
therefore effectively diffusionless or inviscid,
and behaviour in these regions can be discussed

in terms of the Euler rather than the Navier-Stokes
equations.

In the circumstances that have just been
described, it is clear thatd%, in Fig.3 is

a Rayleigh 1ine. As such, it follows that the
(large) part of CW adjacent to point E is behaving,
instantaneously, 1ike a diffusioniess combustion
wave. One is entitled to use the word wave here
because of the clear implication from Fig.2 that
CW propagates in the direction of x-increasing,
doing so in fact with Mach numbers in the region
of 0.27 to 0.29 (in the examples computed so far)
at point S of Fig.3. The implication is that CW
here is a deflagration or fast flame through which
pressure falls steadily in the direction of the
flow.

Prior to time te, CW has all the attributes

of a quasi-steady wave. Changes do take place,
albeit very slowly prior to time te,in both PS,

which strengthens, and CW, which also strengthens
in the sense that the speed of outflow from the
left-hand side of the wave (relative to the guasi-
steady wave itself) begins to approach the local
speed of sound (Clarke, et al, 1989). In the
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terms of Fig.3, the latter is equivalent to a
slow change in the relationship betweeniF,and

ﬁ%(O) towards a condition of tangency at E; in

other words, towards the Chapman-Jouguet condition.

Although such slow changes are important it
is more important to observe that the domain I is
essentially unsteady. Furthermore it is a region
within which chemical changes, although small in
amplitude, are nonetheless significant, as will
be explained in % 3.

After time t_ the picture changes

significantly and quite swiftly. Combustion wave
CW momentarily loses its identify, reaction
spreads over a wider region of space RC (for
"reaction centre"; cf Fig.2), density (which has
been falling from PS through I and into CW prior
to te) begins to increase within RC, which rapidly

takes the form of a localised compression pulse.

A new combustion wave CW then emerges, travelling
much more quickly, and a shock, RS, forms at its
head. The whoTe combinationof reaction-induced
shock RS and CW makes a rapid transition to become
a Zeldovich-von Neumann-Doring (ZND) detonation
wave.

2. MOTION PRODUCED BY MECHANICAL POWER

Now suppose that the same combustible gas
mixture as the one described in 81 is set in
motion by the purely mechanical method of pushing
it into x> 0 by means of a piston.

This situation has been evaluated by using
the numerical random choice method (RCM) to solve
the Euler equations, as described by Clarke and
Singh (1989). Fig.4 illustrates some of the
important features that emerge from these
calculations; P is the piston, set in motion at
time = 0, which drives precursor shock PS into
cold unreacted gas. As in the situation
described in £1, PS lowers induction times by a
large factor and so switches on significant
chemical activity in an induction domain I. At
first the maximum rate of chemical reaction occurs
on the piston face, but at some time te, near to

point D, reaction becomes exceptionally rapid and
a reaction centre RC is formed. The maximum-
reaction-rate path detaches itself from RC and
follows the path labelled CW in Fig.4. Fig.5 is
a picture of chemical reaction rate versus time
for a number of fluid particles as they traverse
CW. One such particle path, labelled ¥, is shown
in Fig.4 and it is pertinent to remark that the
calculations were made using Lagrangian U,t
variables.

There is evidence (cf£%3,4 below) that CW
starts to travel away from D at very high speeds.
Pressure and density levels increase rapidly
within CW, as can be seen in Figs. 6 and 7, which
show p and p versus time for several fixed-i
particle paths. Fig.8 shows p-v Toci for several
y-values, with particle travel marked from (a) to
(b) to (c), through CW, both in Fig.8 and in
Fig.4. For the largest w-value illustrated in
Figs.6, 7 and 8 there is unequivocal evidence
(provided by RCM) for the existence of a shock-
wave RS that has been born from activity within
the combustion wave CW. For values of U that are
slightly larger than the ones depicted in Figs.6 -
8 it is found that the combination of RS and CW
has made the final transition to a ZND detonation.

There are clearly differences as well as
similarities between the situations illustrated
in Figs. 2 and 4. Similarities have been
emphasised by using the same labelling in each
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figure where this is appropriate.

Differences are not quite so evident from
Figs.2 and 4 alone. One large difference lies in
the speed of propagation of CW in the two cases.
For times t< te in Fig.2, CW propagates into I at

subsonic speeds, whilst CW in Fig.4 propagates
into I at supersonic speeds. Thus, whilst it is
proper to call each propagating region of intense
chemical activity a combustion wave, it is evident
that their detailed character, or structure, will
be different in the two situations. A fluid
particle crosses CW in Fig.2, which is a quasi-
steady fast flame for t < te, from (a) to (b), as

indicated on the Tine labelled ¥ in that figure.
Pressure falls from (a) to (b). The situation is
rather less clear-cut in Fig.4 where a particle
traverses CW from (a), through (b) near the
location of maximum reaction rate and then emerges
at (c). Pressure rises from (a) to (b) and falls
from (b) to (c), with the rise taking place, at
least in its early stages from (a), roughly along
a Rayleigh 1ine £ (Fig.8). There is reason (cfg4
below) to believe that (a) —(b) is a transition
through a quasi-steady weak detonation, and that
(b)~~(c) is then an expansion wave that follows
the weak-detonation in order to reconcile the
motion with the velocity boundary condition P. If
this construction is exactly true, chemical
reaction should cease at (b) and (b) should lie on
an appropriate "all-reacted" Hugoniot curve.
Reaction does not cease at (b) and it appears

that weak-detonation and expansion are merged in
this neighbourhood. This is probably due to an
insufficiently sharp dependence of reaction rate
on local temperature (cf4£3) in the calculations
by Clarke and Singh (1989).

It is interesting to remark on the similarity
that exists between the two situations in Figs.2
and 4 for times t > te during which the detonation

wave is born.

Two particular features emerge from the
discussion so far. One is the existence of
propagating combustion waves in a situation for
which diffusion, in its broadest sense, is
effectively absent and the other is the existence
of a class of unsteady induction domains within
which chemical reaction and flow dynamics have
equal status. Each one is discussed in more detail
in the sections that follow, making use of
asymptotic analysis.

3. INDUCTION DOMAIN

Any fluid particle that crosses precursor
shock PS enters induction domain I. Assume that
behaviour downstream of PS is adequately described
by the Euler equations; using Lagrangian co-
ordinates these can be written down in the form

Vi = %b s YUy = <Py s 3.1,2
vat * th ¥ YQct =0 s 3.3
c,+d=0. 3.4

t

The variables are all dimensionless, as follows:
p, v and c are pressure, specific volume and
reactant mass fraction, respectively, measured in
units of p%, v% and c% where subscript-i denotes

a constant reference state and a prime ()'
implies a dimensional or un-normalised quantity;
u is gas velocity Teasured in units of sound
speed a% = (Yp%v%)L; where vy is a constant ratio

of specific heats; t is time measured in units of
an induction time tii and U is the Lagrange co-



ordinate in units of a%tii/vi ; Q= (y-1)Q ci/pivi

where Q' is heat of reaction per unit mass of
reactant; finally ¢ is the chemical reaction rate
(strictly, a frequency or reciprocal of a time)
divided by C%/tii'

It is perfectly adequate for present purposes
to model the chemical reaction as one of first
order that proceeds via Arrhenius kinetics with
activation energy EA. In the circumstances a

physically acceptable model for @ is
Qo = eexp{(T-1)/eTlc , 3.8

It will be assumed that € « 1, since it is
a measure of the sensitivity of chemical reaction
rate to changes of temperature. Asymptotic
analysis of (3.1-5) is carried out in the limit
as e—=>»0.

Assume that conditions ()i are those which

prevail immediately downstream of shock PS at a
particular time, such as t, (Fig.2) or zero

(Fig.4), at which PS, I and CW have become
distinct domains, away from the influences of
diffusion. Subsequent events in I at least, can
be followed for some time after td by looking for

asymptotic approximate solutions of (3.1-5) in the

form ~

flu,tse) ~ fi £ ef(U,t) 3 £ = pa¥.CiM, 3.6
in the 1imit as €=~ 0 with {,t fixed. The
(constant) quantities f,i are equal to 1 when f is

p, v or ¢ and equal to the Mach number of the flow
immediately behind PS (which is 0(1) as e =0} at
time td in Fig.2 or time zero in Fig.4.

Perturbation quantities ¥, and their
derivatives with respect to v and t, are 0(1) in
the e-1imit, by hypothesis. The implication is
that time and length scales for significant

variations in I are indeed tIi and aitIi; as a

consequence it canbestated that time-variations
of f (cf(3.6)) are 0(e) on any path in I that
travels with speed less than or equal to the Tocal
sound speed, which is 1 to leading order in I.

In the circumstances (3.1-5) reduces to the
following system of equations:

=24

Vil

YWe - Py = yexp T 3 Qct =-exp T, 3.9;10

=0, YU + p¢ =0 3.7,8

and T = p + V is the temperature perturbation.
These equations can be written in various ways to
illustrate various features of the I-domain.
First,

Pyt byt wr(ut x 0y,
(taking either upper or lower signs together)
shows that propagation of § and U disturbances
along (acoustic) wavelets dy/dt = £ 1 is
influenced by the combustion reaction acting as a
source term (yexpT). Second,

) = yexp i 301

('Y‘l)pt e T{Tt _EXPT}:(Y'I)Vt :'{Tt_'\'ex‘) T}é 12.13
show how T would change with time if either
pressure or specific volume was constant. Third,
noting that (3.7 and 8) together make
Yv{t + E¢¢ =0, it quickly follows that T

satisfies the third-order partial differential
equation

{T, - yexp Thyy - {T, - exp Thyy = 0- 3.14

Evidently the induction domain is a region within

which competing tendencies to thermal runaway at
either constant volume or constant pressure are
resolved by the presence of acoustical waves that
travel at speeds betwggn + 1 (cf the operator
Tttt = Ttw¢) and + ¥y (cf operator y(expT)tt -

(exp T)ww)'

Equation (3.14) has some interesting
properties (Clarke, 1981, _1985), but dominant
amongst them is the fact T—- like —1n{y(te—t)}

as t approaches an explosion time te at some point

or location within the field generated by a variety
of boundary- and/or initial-value data (Clarke and
Cant(1984); Jackson and Kapila (1985) for "piston
problems": Cant (1984) for "contact-surface" .
driven flows: Dold (1988);_dJackson, Kapila and
Stewart (1987) for initial T-values with a single
maximum). Furthermore p~-= = 1ike - 1In{ A(te—t)}

where A is a 0(1) constant. Density variations in
the vicinity of thermal runaway (equal to l-ev to
0(e)) remain bounded, since V —1n(A/y). Note
that the value of A will depend upon the
particular conditions that precede, and indeed
control, the runaway process.

Solutions of (3.7-9) have all been obtained
numerically, with one interesting exception.
Blythe and Crighton (1989) have exploited the
asymptotic Timit (y-1)-= 0 to study the situation
in Fig.4 prior to to- Their results agree

remarkably well with the numerical studies (cf
authors quoted in the previous paragraph), which
have all been made for y = 1.4.

When te—t = 1-+=0 it is valuable to examine

the structure of the thermal runaway region by
analytical means. There are obviously a number of
different physical situations in which runaway or
reaction-centre behaviour will be encountered
{indeed Figs. 2 and 4 illustrate two of them) and
there is still much to do before understanding is
complete. Two particular situations have been
studied so far; both involve initial-value
problems for (3.7-9). Jackson, et al, (1987) have
dealt with the case of a single, symmetrical, 0(e)
-peak distribution in T-1, and with the situation
in x » 0 for which TX(O,O) < 0 (this is in essence

what happens in Fig.4 for t-—te). Dold (1988)
has also analysed the symmetrical case.

Physical arguments show that in either of
these two situations runaway, or the generation of
a reaction centre RC (cf Figs. 2,4), takes place
at a particular point in U,t space, which suggests
that independent variables that "focus" on such a
point will be useful. For the problem illustrated
in Fig.4 it is clear that runaway first occurs
near D(v =0, t = tE); variables of the form

T2t -t, v/a(t) , 3.15
where o(t-»0)-0, are required. Jackson, et al,
find a central core to the runaway domain in which
o(t) = T and, outside of this, a larger region
for which

oty =1, b<n<1. 3.16

The index n is equal to y/(2y-1). In this outer
part of the reaction centre it is found that

T ~ <Inlyr + vBM/"] ~ p + 0(1) 5. 17

as T-=0 with v/t" fixed, where B is a 0(1)
constant. When runaway takes place from a smooth
initial maximum in T at v = 0 Jackson, et al, and
Dold all find that n = 3.
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Temperature, pressure and reactant mass
fraction all vary by 0(1) amounts in brief,
exponentially small, time-intervals after the
establishment of runaway. Jackson, et al,
describe this behaviour for locations close to the
initial point of runaway, such as D in Fig.4, but
it is more important for present purposes to turn
to some very recent work by Dold and Kapila.

4. SINGULARITY PATHS AND COMBUSTION WAVES

The significant point is made in two recent
works (Kapila and Dold, (1989) and Dold and
Kapila, (1989)) that the runaway process,
described in terms of a point-event at the end of
the last Section, does in fact persist along a
locus or path that may well be a continuous curve
in ¥,t space which starts in a reaction centre RC.
Such a locus has been called a singularity path
since it is defined to be the set of points at
which T and p, as solutions of (3.7-9), become
lTogarithmically unbounded.

The appearance of such a locus in an
asymptotic analysis is clear evidence that new
physical behaviour is ocurring in its neighbour-
hood, specifically that the asymptotic forms (3.6)
and (3.7-14) have broken down and that a new set
of equations is necessary to describe the local
behaviour.

Suppose for the present that a singularity
path exists, say along t = tw(w}. The proposition

is that substantial changes in T, p, etc., occur
with great rapidity as tw(w) is approached or

crossed in, for example, the t-direction, whilst
changes with t along tw(w), or lines parallel to

the tw—10cus, are relatively very slow. Dold and
Kapila define co-ordinates £(= tw-t) and ¥, and
make (B/Bw)E & (3/a€}¢' Applied to the

induction-domain equations (3.7-9) this leads to
the conclusion that to leading order as £~0 +
(i.e. from within I)

T~ = Inf(y-tp2)E/(1-t2) ) 4.1

and . =
T~ (y-tp2)p 5 t, = dt /db . 4.2

Comparing (4.1) with (3.17) shows that the
singularity path near a point like D in Fig.4,
where té << 1, is given by

1/n
tw ~ te + By s 4.3

The quantity l/té is equal to the mass flux
through the tw-1ocus; (4.3) demonstrates that this
mass flux is arbitrarily large as ¢ =0 on tw, S0
that tw defines the location of an event that

travels into ¥ > 0 with very great (supersonic)

speed, although this speed does diminish as one

moves away from the "origin" (such as point D in
Fig.4).

The structure of the "boundary layer" that
develops round tw is described to leading order,

by application of the derivative orderings,
described above, to the Euler equations (3.1-4).
This amounts to replacing ft by —fE and fw by

t\;fE for any quantity f. As a consequencé (3:152)
show that
{p+ ym*v} - {p,(¥) + ymPv (W)} =0, 4.4

where m is the reciprocal of t&; (4.4) defines a
Rayleigh line process. Exploiting (4.4) to write

VPg = VP + (P-Py)Ve
the energy equation (3.3) is re-written to read
2y(pv) g~ (v=1){ vV, )+ (p-po ) v 4210c, = 0, 4.5

which'can be integrated to provide a Hugoniot
relation (i.e. a p, v relation parameterised by

c for any chosen y-value). Thus the "boundary-
layers" around tw(w) have a quasi-steady structure

that is determined by standard Rayleigh-Tine/
Hugoiniot-curve analysis in addition, of course,
to matching to the conditions determined by
solutions of the I-domain equations, exemplified
i (4. L.2).

The appearance of a singularity path in a
solution of (3.14) indicates that a quasi-steady
combustion wave, that carries substantial changes
in all of the fluid properties, has been createdin
the field. Such a wave may propagate either super-
sonically (cf relation (4.3) and its consequences),
in which case it is a weak deftonation, or sub-
sonically, in which case it is a fast flame.

Dold and Kapila (1989) have completed a
thorough asymptotic analysis of the situation
exhibited in Fig.4, and have described how the
final ZND wave emerges as the weak detonation
decellerates towards a CJ state. Figs.5 through
8 are broadly consistent with these findings.

The situation illustrated in Fig.2 differs
from the one in Fig.4 by virtue of having a
combustion wave included as part of the "initial"
(i.e. t:td) conditions for the Euler problem.

This means that the I region now includes a
subsonic singularity path within its domains of
dependence. Region I will therefore also be
susceptible to influence from the hot "all-burnt”
region to the left of the combustion wave; this
quite complicated problem has yet to be considered
in detail.
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W Fig.3 The p,v-plane for the profiles illustrated
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b in the two figures.
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Fig.1l Temperature and pressure vs x at a fixed
time t, t;< < te (Fig.2) for flow

driven by heat power
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d %’ 5 = Fig.4 Distance-time diagram for flow driven
@) . e by mechanical power (schematic).

Fig.2 Distance-time diagram for flow driven
by heat power (schematic).
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Fig. 5 Chemical reaction rate .(cf (3.5)) vs. time Fig.7 Density vs. time (cf caption for Fig.h)
for ten values of y (particle paths);
mechanically drivsn field. v=6.2 x 10 7,
(4.3 & 8.4) x 1072, (1.55, 2.5, 3.4, 4.17,
5.36, 6.14 & 6.91) x 10°2.
4.30
4.00 4.00
.50 3.50
3.00. 3.00
2.50, 2.30.
2.00J 2.00
: 1.30 : 1.30.
2 2
b 1.00. . 1.00
0.30 0.30
0.00. 0.00.
nn.ou1 111.00 112.00 113.00 ||-|.oo”u'2 0.30 0.60 0.%0 .70 .50
t TInNE SPECIFIC YOLUNE
e
Fig. 6 Pressure vs. time (cf -aplic for Fig. 5) Fig.8 The p,v-plane (cf caption for Fig.5);

regions (a), (b), (c) correspond with
similarly labelled regions in Fig.4
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