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ABSTRACT

Shear waves or columnar disturbances occur in a variety of
situations in stratified fluids. For withdrawal from a strati-
fied fluid the transient behaviour following the initiation of
discharge is described by an infinite series of shear waves.
However when the shear waves have finite amplitude linear
thecries are inadequate and a nonlinear theory is required
to describe the evolution of the flow. A weakly nonlinear
model for long, dispersive, internal waves is used, leading
to a Korteweg-de Vries (KdV) equation for stratified flu-
ids. The linearized KdV, or Airy, equation is solved for
either the initial value problem or a mixed boundary, ini-
tial value problem to yield solutions in agreement with the
linear theories for shear waves. Previous scaling analysis
for surface waves is extended to determine when the KdV
model is valid for shear waves. When nonlinear terms are
included, the shear waves are weakly nonlinear forms of
internal undular bores. The solution obtained using mod-
ulation theory is used as an initial guide to the nonlinear
behaviour of shear waves and is complemented by numer-
ical solutions for particular cases.

INTRODUCTION

When a sink is initiated in a stratified reservoir, it is found
for certain conditions the fluid withdrawn will only come
from about the level of the withdrawal sink. In practice
the withdrawal layer is often only metres thick, kilometres
downstream from the sink. This effect, known as selec-
tive withdrawal, is now well understood and is used exten-
sively for water quality control. The development of the
withdrawal layer is described in detail by Imberger et al.
(1976). Their analysis found that the behaviour was de-
pendent on the parameter R = Q(NL*2)~ %, where Q is
the flow rate per unit width, N is the buoyancy frequency,
L is the length of the reservoir and v is the kinematic vis-
cosity of the fluid. Three different regimes can be identified
dependent on the magnitude of R. If R < 1, withdrawal
will be described by a viscous—buoyancy balance, for R ~ 1,
viscous and diffusive terms will no longer be important and
when R > 1, inertial terms will dominate. Selective with-
drawal will no longer occur in a stratified fluid once the
internal Froude number, F = @/Nh? where h is the depth
of the duct or reservoir, is greater than #~!. Once this
occurs the flow will be described by potential theory.

The establishment of selective withdrawal in a hori-
zontal duct was described by Pao & Kao (1974). They
found that withdrawal was caused by columnar distur-
bances, which propogated away from the duct with the
appropriate long wave speed ¢, = Nh/nw; where n is the
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modal number for that wave (i.e. the n** mode has a ver-
tical velocity, w = Asinnwz). A shear wave or columnar
disturbance is able to propagate away from the sink if its
speed is greater than the speed of fluid travelling towards
the duct, um = Q/h. ff upm > c1 or F' > ™1, the first mode
shear wave cannot propogate into the duct and hence no
withdrawal layer will form. As higher mode waves become
able to propagate into the duct, the withdrawal layer thick-
ness decreases. The structure of shear waves was indepen-
dently verified by McEwan & Baines (1974), who studied
shear flows and found that the flow was established by the
same waves. They found that the shear wave frontal width,
defined as the distance for the velocity difference to change
from 5% to 95%, was given by

_ R(Nt)}

bn (1)
Experiments performed in both of these studies, in the
linear regime, showed good agreement with the theoretical
results.

The motivation for the present study commences with
an experimental series on unsteady selective withdrawal
performed by Monismith et al.(1986). They studied prob-
lems similar to selective withdrawal when the sink was sud-
denly opened, allowed to flow at a constant rate and then
shut. As would be expected from linear theory, it was
found that  positive’ shear waves were produced when the
sink was opened and ‘negative’ shear waves when the sink
was closed. The negative shear waves had the effect of an-
nulling the velocity field produced initially. Downstream
from the sink the behaviour of these sets of shear waves
could be well observed, since the differential wave speed of
each mode allowed the waves to separate into pairs. As
the flowrate was increased nonlinear effects were found to
become important and manifested themselves in two ways:
only the amplitudes of the lowest mode waves could now
be calculated accurately, and the separation -between pos-
itive and negative fronts was significicantly different from
linear predictions.

In the following sections a nonlinear model for shear
waves is derived, with the appropriate initial and boundary
conditions. As the linearised form of this model is differ-
ent to the previous models for shear waves, the linearised
solution to a similar problem to selective withdrawal will
be given, together with a numerical solution for the case
of selective withdrawal or shear flows. In the final sec-
tion, criteria for using the nonlinear model are shown. A
modulation solution for the case where the nonlinear shear
waves are influenced by the solid boundary is formulated
and numerical solutions are shown to verify this solution
and display the behaviour of a nonlinear shear wave with
negative initial amplitude.



NONLINEAR MODEL

Nonlinear models for internal waves in stratified fluids
are well known. Benney (1966), proposed a model based
on two perturbation parameters e and p, where € = a/h,
g = h2/)2, a is a typical amplitude of the wave and A is a
typical wavelength. If z, z and ¢ are nondimensionalized by
the scales h, u~1/2h and p~1/2(h/g)!/2, respectively, and u
by the scale (gh)}/?, to first order in € and u the stream
function can be written as ¢ = A(z,t)¢(z), where ¢ satis-
fies the eigenvalue problem:

(p6:): — o =0,
¢(0) =¢(1)=0

and c is the appropriate long wave speed. The amplitude,
A, satisfies the KdV equation:

(2)

Ar+chA, +erdA, + psA,,. =0. (3)

The nonlinear and dispersive coefficents of equation (3) are
given respectively by:
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The KdV equation can be transformed to its canonical
form by introducing the variables:

€T

xX=z—ct, T=pust, u=-6-,-;A. (5)
The resulting form of equation (3) is:
Uyp + Buly + Uyyy = 0. (6)

From (5), it is seen that dependent on the sign of r, the ini-
tial amplitude will be positive or negative, which is critical
to the nonlinear behaviour of the shear waves.

Equation (2) will have an infinite number of solutioss,
giving eigenvalues ¢, and eigenmodes ¢,. For an exponen-
tially stratified fluid, given by p = e=#*, Benney (1966)
showed that

L hoieid jpan sevie
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For a linear stratification, p = 1 — Bz, ¢, can be expressed
in terms of zeroth order Bessel functions and ¢, is the so-
lution of a related transcendental equation. In the limit of
A — 0, this and the solution for exponential stratification
will both have the same limit. For an exponential stratifica-
tion the dispersion coefficient is given by s, = ¢n/2(nw)2.
Numerical integration can be used to show that for linear
stratification s, will be similar. If equation (2) is solved
numerically and Simpson’s rule is used to evaluate r,, it
is found that slight variations in stratification can produce
marked variations in the parameter r,. An analytical ex-
pression for r,, can only be obtained for exponential strat-
ification and is given by:

Cn ¢n = e sinnrz. (7

B 88(nm)3((—1)"ef/2 — 1)
((£)? + (nm)2)((§)2 + 9(n7)?)
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In figure 1, this is compared with numerical values for ry
for the cases of linear and logarithmic (p = 1—log(1— 8z))
stratifications. In the limit of B — 0 these stratifications
are identical but as can be seen all three have a linear
dependence on 8 with widely varying slopes. Since r varies
in sign, while s stays of constant sign, the initial amplifude

0.1

-0.1 s

-0.2 - - - -
0.00 0.05 0.10
g
Ficure 1: The behaviour of the first mode nonlinear coef-
ficient for - --- exponential, — — —— linear and - — - —-—

logarithmic stratifications.

and hence the nonlinear behaviour of shear waves will be
markedly different for each stratification.

The nonlinear model proposed by Benney (1966) ap-
plies to a single mode propogating in a duct. In study-
ing the problems of selective withdrawal and shear flows,
the streamfunctions are combinations of an infinite sum of
modes given by ¢ = > 27 A,(z,t)¢n(z). I we assume
that in the weakly nonlinear limit interactions between
modes are negligible (see Smyth,1987), for each mode an
equation of the form of (3) will apply coupled with the
initial and boundary conditions:

A(0,t)=A; lim A=lim A, =0 ¢>0,
T—0Q T—00

A(z,0)=0 ®)

0Lz < oo.

These boundary and initial conditions correspond to an
induced velocity at a solid boundary, resulting in a wave
propogating towards infinity. The initial amplitude for
each mode, Ay, can be obtained by Fourier series from the
boundary condition for 3. For shear flows and selective
withdrawal, the difference is only this initial amplitude.

A similar problem to a wave propogating away from
a solid boundary, which will be used as a comparison, is
an initial step profile in an infinite domain. The boundary
and initial conditions for this are:

lim A=A, lim A=0
Z—00

Z——00

Az,0)= {

lm 4.=0 t>0,

T|—00

Ay z<0

0 z>0.

(10)
For the canonical form of the KdV equation, the corre-
sponding boundary and initial conditions to (9) are:

er
u(x=k7,7)=ug Im u= im u, =0 70,
X—00

X—o0
u(x,0) =0 0<x<ow
(11)
and the infinite boundary and initial conditions for an ini-
tial step profile are equivalent to (10), with appropriate

substitutions.

LINEARISED SOLUTION

To compare the proposed model against previous mod-
els, we take the linear limit ¢ — 0 of equation (3). This
gives the dispersive wave equation or Airy’s equation. To-
gether with the conditions (9), this system is equivalent
to that solved by McEwan & Baines (1974) and Pao &
Kao (1974). To show the behaviour we will firstly consider
Airy’s equation:
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Ay +cAz + P'SAzzs =0, (12)

with the conditions (10) and Ag = 1, since the solution is
independent of amplitude.

As outlined in Vleigenthart (1971), dispersive wave
techniques can be used to give:

Ma0=LmAWﬂ®, (13)

z—ct 1 29 1
= i(n) = — k3 k) dk:
whemt = 2= i) = [ o (5% +18)

The infinite solution is shown in figure 2(a) for ¢ = 20,
¢ =1 and ps = 0.]. If the solution is shown in terms of
the similarity variable £, the frontal width extends from
£ =2 to £ = —2 and therefore returning to the original
variables, it can be shown that the frontal width is:

%
b= .. (ENt) ’ (14)
nw \ 2

in agreement with equation (1). To determine the be-
haviour of shear waves in the presence of a solid bound-
ary, equation (12) coupled with the semi-infinite bound-
ary conditions (9) was solved using a linearized version of
the finite-difference scheme proposed by Vleigenthart and
a boundary discretisation similar to that proposed by Chu
et al. (1983). This solution is shown in figure 2(b), for the
same conditions of those of figure 2(a). Examination of
the two solutions shows that for both the frontal width is
almost identical. In figure 2(b) the solid boundary is posi-
tioned at z = 0, hence the solutions can only be compared
ahead of this point. As would be expected, the restriction
of A = 1 at the boundary significantly reduces the ampli-
tude of the wavetrain trailing the leading wave, however
as with the frontal width the wavelength is not changed in
any way. Comparison of the leading wave for each case,
shows that in the presence of a solid boundary the ampli-
tude of this is also reduced. The numerical solution shown
in figure 2(b) and other solutions not shown, indicate that
for the presence of a solid boundary the amplitudes’of the
leading and trailing waves will gradually build up from zero
and for large times asymptotically approach those for the
full infinite solution, equation (13).

To describe the behaviour of shear waves McEwan &
Baines (1974) and Pao & Kao (1974) both used approxi-
mation methods. McEwan & Baines evaluated the relevant
integral using the method of stationary phase, while Pao
& Kao mapped the integral to an infinite series. From ex-
perimental observations McEwan & Baines stated that the
oscillatory contributions were only a small fraction of that
of the front and hence they only evaluated that part of the
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Ficure 2: Shear wave solutions of Airy’s equation, for
(a) an initial step profile in an infinite domain and (b)
propogation away from a solid boundary at =z = 0.

integral giving the shear front. As has been seen this gives
the same basic structure as equation (13). McEwan &
Baines experimental observations were only taken a small
way down the duct and in the same manner as the solu-
tions of equation (12), the oscillatory contributions would
have only been a small part of their asymptotic magnitude.
The oscillatory contributions from the method of station-
ary phase can be evaluated, where upon the solution is
almost identical to the full infinite solution, equation (13).
In terms of the amplitude of the leading wave and frontal
shape, the series solution of Pao & Kao shows good agree-
ment with the solid boundary solution in figure 2(b).

NONLINEAR SOLUTIONS

Hammack & Segur (1976) considered modelling crite-
ria for surface waves developing from an initial displace-
ment 7(z,0), which can be adapted for stratified waves.
Their analysis results in criteria based upon a localized
Ursell number Uy, which medsures the ratio of nonlinear
to dispersive effects. If Uy ~ 1, then the appropriate equa-
tion is the KdV equation. If Uy < 1, linearised dispersive
theory will apply up to a timescale 7 ~ 10%, after this the
nonlinear KdV theory is again applicable. For scaling pur-
poses the stop/start sink of Monismith et al. (1986) and
paddle of McEwan & Baines (1974), can be thought of as
an initial value problem in an infinite domain, where the
sink or paddle has a characteristic period Ty. Hammack &
Segur’s localized Ursell number for shear wave propogation
in stratified fluids becomes:

2

= (TgNh) |T|u"l (15)

(nm)2Bsp(gh)’}
and ., is the maximum induced shear velocity for shear
flows and the average induced velocity for selective with-
drawal. For stratified flow in a duct the relevant viscous
timescale is given by 7, ~ pl/2Nk?/2(nr)3v. With typ-
ical laboratory situations this gives 7, ~ 3 x 10? and so
we see where linear dispersive theory is initally applicable,
the nonlinear KdV theory will not apply at any time. For
the upper limit of experiments performed by McEwan &
Baines (1974), if we assume a value of Ty ~ 20 s the local-
ized Ursell parameter has a value of Uy ~ 0.6 for the first
mode shear wave. With the experiments of Monismith et
al.(1986), for a sink at the base of the duct rather than the
centre (resulting in odd mode waves being excited rather
than just even modes) we obtain Uy ~ 0.2 for the first
mode.

If the properties of a nonlinear, dispersive wavetrain
are averaged over a wavelength then the equations (3) and
(6) can be transformed to a set of characteristic equations
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FigurRe 3: Numerical solutions of the KdV equation for
an initial (a) positive and (b) negative amplitude, when
the wave packets are affected by the presence of a solid
boundary.



in terms of these relevant properties. Gurevich & Pitaevskii
(1974) used this modulation theory to obtain a solution
of the infinite system in terms of the mean height «, the
amplitude of the oscillations a and wavenumber k. This
solution was adapted by Smyth (1987) for the case of a sta-
tionary wall at x = 0 and can be simply extended for the
moving wall problem (Smyth, personal communication). If
a =wug at x/T = —c/us instead of at x = 0, as is the case
for the stationary wall problem, the following solution it
obtained:

/
a=B(m—1+2£‘((::))), a = Bm, k=7_,r<—f(t§,(16)

PICC ST

K(mw)
2m(1 — m)K(m) )
E(m) —(1-m)K(m)/’

where: §-=2B(1+m—
me<m<1 —co <X <4B,
and m,, is the solution of

£ My )—(1—my My

15/ p— (17)

M

2 (14— piEalismalee) )

UGS
= f(mw).

The functions F and K are complete elliptic integrals of
the first and second kind respectively. The function f(m.,)
has a range extending from —6 at my = 0 to co at m,, =1,
with the z intercept occuring at m,, =~ 0.63.

The two limits of this solution are firstly, if ¢ = 0
the solution reduces to that for the stationary wall prob-
lem. Secondly, if ug > ¢/6us then the modulation packet
is unaffected by the presence of the wall and the solution
reduces to that for the infinite case, with the parameters
of equation (16) becoming B = ug and m,, = 0. The lim-
itation of the modulation solution is that it is only valid
for up > 0. However-when ug < 0 we see from Forn-
berg & Whitham (1978) for the infinite case that a signifi-
cantly longer front will form with the oscillatory tail being
smoothed out. Eventually for ug > 0 solitons will form at
the front whereas for up < 0 no solitons will develop.

To verify the modulation solution and also examine
the behaviour of the wave packet when ug < 0, two nu-
merical solutions are shown in figure 3. These are solu-
tions of equation (3) coupled with the boundary condi-
tions (9), solved using an explicit method similar to Chu
et al. (1983). The values of the parameters used are ¢ = 1,
us =0.1, er =1 and Ay = £2. The nonlinear shear waves
are shown in both figures at time ¢ = 10. The parameters
used result in the modulation packet being effected by the
presence of the boundary, which if we compare figure 3(a)
& (b) against the infinite solutions of Fornberg & Whitham
(1978) is correct. As would be expected, figure 3(a) shows
the same characteristics as the solution of Chu et al. for
the case ¢ = 0. Substituting into the modulation solution,
we obtain from equation (17) that m, = 0.58 and hence
B = 1.066ug. Therefore we should have at the boundary
that a = 0.6. Extrapolating the modulation packet, it is
found that the numerical and modulation solution show
good agreement at this point. Figure 3(b) shows that the
character of a negative step will change considerably due
to the presence of a boundary. No longer will we obtain
a slowly dispersive front, but instead an abrupt change in
amplitude with no oscillatory waves.
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CONCLUSION

The KdV model for stratified fluids is applicable to de-
seribe shear waves once the Ursell parameter is such that
Up ~ 1. For Us < 1, the times to reach nonlinear be-
haviour are significantly greater than the viscous time scale
associated with the flow. For certain stratifications, those
with er > 0, modulation theory can be used to describe
the nonlinear behaviour of the shear waves. The form of
the modulation solution is dependent on whether the wave
packet is effected by the boundary, which is governed by
ug > ¢/6us. When the waves are unaffected by the bound-
ary, their form is that of an undular bore. In this case the
amplitude of the leading wave will asymptotically develop
to twice the initial amplitude, which is significantly greater
than the amplitude predicted by linear theory. If er <0,
numerical solutions show that the effect of the boundary
is governed by the same constraints. The nonlinear form
of the shear waves when not effected by the boundary will
be a slowly dispersive front, rather than an evolution to
solitons. For this case the amplitude will be less than the
linear prediction. When the wave packet is affected by the
boundary, modulation and numerical solutions show sig-
nificant differences for both positive and negative initial
amplitude. In both cases, the form of the shear waves is
much more abrupt, with a further increase in amplitude
for positive initial amplitude and a compressing of the dis-
persive front for negative initial amplitude.
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during the course of this work by Prof. Jorg Imberger,
thanks are also due to Dr Noel Smyth for assistance with
nonlinear solutions and to Di Greg Ivey and Mr Robb Mec-
Donald for comments on earlier manuscripts.
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