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ABSTRACT

A pseudospectral numerical model is developed for solving
time-dependent linear and non-linear partial differential
equations. This method approximates a solution to a differential
equation at certain selected points with a series expansion of
orthogonal polynomials. Chebyshev polynomials are used in the
numerical model and the selected points at which the numerical
approximation is done are known as the collocation points.
These collocation points are the extrema of the Chebyshev
polynomial. The usage of the Chebyshev polynomial as the
interpolating function enables one to evaluate the spectral
representation (in terms of the Chebyshev coefficients) of the
actual function using the Fast Fourier Transform (FFT)
technique. The numerical approximations of the spatial
derivatives of the function in question are derived from the
global consideration of the Chebyshev coefficients of the
function. Numerical solutions to three problems are obtained and
are discussed in this paper. Agreement with analytical solutions
is good.

INTRODUCTION

Many useful versions of spectral methods have been
developed and some are described by Fletcher (1984). Gottlieb
& Orszag (1986) also provide a comprehensive discussion of the
theory and the application of some of these spectral methods.
For instance, the spectral technique is often used for predicting
and modelling the transition from laminar to turbulent flow. This
numerical method has also been applied to other areas of
computation fluid dynamics. Global weather modelling, heat
transfer, reacting flows and magnetohydrodynamics are just a
few of the numerous applications of the spectral methods to the
wider area of fluid dynamics.

The pseudospectral technique, using the Chebyshev
polynomial as the basis interpolation function, is especially
popular with the study of boundary layer flows. This is because
of the distribution of the collocation points in the calculation
region. As these collocation points are the extrema of the
Chebyshev polynomial, they concentrate at the regions near the
boundaries and are sparsely distributed in the region between
them. Since the boundary layer is a thin layer adjacent to the
surface on which it develops, such an allocation of
computational grid points is very useful.

This paper discusses the pseudospectral or collocation
method which is popular in the field of incompressible fluid
dynamics modelling. The ability to apply the FFT to transform
the function from its physical representation to its spectral
representation (in terms of Chebyshev coefficients) or vice
versa, makes it very attractive especially when non-linearities are
encountered in a partial differential equation. This feature makes
the evaluation of the non-linear terms economical on
computational times compared to, for example, the Galerkin
spectral method. The model described in this paper is being
further developed to aid in the study of the receptivity of a
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laminar boundary layer to a disturbance generated by a vibrating
leading edge. This paper, however, describes some of the
techniques used in the model and only one-dimensional cases are
considered. The reliability of the model (built for eventual use in
the study of the receptivity problem) as well as its versatility to
solve various types of unsteady fluid dynamic problems are
shown.

The numerical solutions to three unsteady fluid dynamic
problems are discussed. Two types of time-differencing
schemes are used for these time-dependent problems. These
three problems are chosen to demonstrate the effectiveness of
this method in relation to solving the linear and non-linear partial
differential equations in unsteady flows. More examples will be
presented at the conference.

EQUIPMENT

The software developed for solving partial differential
equations (linear and non-linear) with the pseudospectral
(collocation) method were written in the C programming
language. The development and actual execution of the
numerical simulations were performed on a Macintosh II
personal computer. This computer has an MC68020 Motorola
32-bit architecture, 15.67 MHz clock frequency processor. It
also has an in-built Motorola 68881 floating-point coprocessor.

PSEUDOSPECTRAL APPROXIMATIONS OF SPATIAL
DERIVATIVES

The codes to evaluate the first and second spatial
derivatives were tested with the following functions:

f(x) = 1 + sin(2*n*x + m/4) (¢9]

The derivatives of the above functions are calculated in the range
(0 = x < 1). The numerical results are shown in Figure (1).This
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Figure 1. Comparison of the numerically determined first derivative of test
function and that obtained analytically in the range (0 < x < 1).
(o - numerical solution, - analytical solution)




range is used in the numerical solutions of the unsteady flow
problems presented in this paper. These numerically determined
values of the derivatives are compared with the solution obtained
by differentiating the functions directly. The solid lines in the
figures represent the solution obtained by direct differentiation of
the test function concerned whereas the open squares are the
numerically calculated ones. The percentage error in these cases
was less than 0.01%. There is also no evident phase shift of the
numerical solutions relative to the analytical results. The ability
of this numerical technique to approximate the spatial derivatives
a function is crucial as numerical solutions to partial differential
equatins involves manipulation of such derivatives.

This method of determining the spatial derivatives of a
function numerically is known to be more accurate than the other
methods of numerical approximations such as the finite-
difference or the finite-element method. This is because the
latter methods use only the local information to estimate the
derivatives whereas the method presented here utilizes the global
information of the function over the entire domain (Hussaini &
Zang (1987)). This is clearly advantageous. However,
pseudospectral numerical simulation involving compressible
fluid dynamics had to be carefully dealt with. Any
discontinuities in the values of the function in question will lead
to two point oscillations of wavelength A= 2*Axj over the entire
mesh. As the mesh is not uniform, the spectrum of these
oscillation is large (Cornille (1982)). These oscillations can,
however, be removed by filtering. The subject of such filtering
will not be discussed here since the flow problems considered
are incompressible. This subject is dealt with by Cornille
(1982).

TIME DIFFERENCING SCHEMES

In the numerical solutions to the time-dependent partial
differential equations described, the following time differencing
schemes used are:

(1) Crank-Nicholson (when solving linear problems
with non-zero viscosity),

(2) Adams-Basforth-Crank-Nicholson (when solving
non-linear problems with non-zero viscosity).

These are implicit time differencing schemes which will
give rise to a set of linear ordinary differential equations. The
boundary conditions are absorbed into the right-hand side of this
set of ordinary differential equation. The differential operator is
written in matrix form using the finite difference approximation.
This system of equations and hence the time incremented value
of the variable of interest, can be solved by pre-multiplying the
set of equation by the inverse of the matrix representation of the
differential operator. Since the set of matrix equations is tri-
diagonal, it can also be solved by standard Guassian elimination
without pivoting. This method of solution is more economical
on computer storage. These are the recommended time-
differencing schemes when the viscosity is non-zero. The
numerical solutions obtained with these time-differencing
schemes were averaged periodically (about every 20 time steps)
to avoid the appearance of oscillations due to any numerical
instability. This method is similar to that described in Roger &
Taylor (1982).

NUMERICAL SOLUTIONS

1 One rigid boundary moved suddenly and one held
stationary

This problem is described schematically in Figure (2). The
fluid between the infinite plates is initially at rest and the lower
plate is brought suddenly to a constant velocity U in its own
plane with the upper plate remaining stationary. The fluid
between these plates will be brought into motion by the viscous
stress at the plate with the velocity distribution determined by the
following normalized equation:
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Upper plate held stationary

y

L.

Lower plate moving with velocity as indicated

—
U or UCos(twt)

Figure 2. Schematic representation of the unsteady flow problem

U=Uyy/Re, (Re=Reynolds' No) 2)
with boundary conditions,

U =U=10,and t>0 3)
U, =0.0 t>0 4)
The initial condition used is;

U(y,0) = 0.0 0<y<H 5)

The velocity distribution is calculated numerically using the
pseudospectral technique with Re=100 and a time step of 0.001
sec. Thirty two collocation points were used. The result is
shown in Figure (3). The analytical solution to this problem is
obtained from Batchelor (1987). The percentage error in this
particular example is less than 0.01%. This model clearly shows
the transient motion of the fluid within the plates when the
bottom plate is given a constant velocity when t > 0. The
agreement between the analytical and the numerical solution is
good.
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Figure 3. Numerical and analytical solution to problem (1).
(Reynolds' number = 10)
(0 - numerical solution,

2 Flow due to an oscillating plane boundary (zero mean flow)

The lower plate in problem (1) is now subjected to an
oscillatory velocity, Ucos(wt) (where o is the angular frequency
of oscillation). This situation is also depicted in Figure (2) with
an oscillatory U. It is expected that fluid motion between the
plates will go through a transient and then finally achieve a
steady state. Batchelor (1987) showed that the veloeity around
the lower plate will gradually become a harmonic function of
time, t, with the same frequency as the velocity of the oscillating
boundary. The steady state velocity profile, which is a function
of time t, is also given.

- analytical solution)

The governing equation for this problem is the same as that
given in eqn (2). The oscillating plate is introduced as a
boundary condition,



U(0,1) = U cos (wt). (6)

Numerical calculations of the velocity distributions were
performed with the pseudospectral technique and an example of
the solution is shown in Figure (4). The value of Re used is 10
and a time step size of 0.001 sec is employed. The solid lines
represent the analytical solution whereas the numerically
calculated ones are denoted by the open squares. These figures
show that the fluid velocity oscillations are confined to a layer a
small distance from the oscillating plate which is commonly
referred to as the Stoke's layer. To accommodate a better
comparison with the analytical solution, the velocity calculations
are performed only in a layer close to the plate as shown in
Figure (5). Very good agreement between the numerical and the
analytical solution is obtained.
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Figure 4. Numerical and analytical solution to problem (2)
at a certain time step. (Reynolds' number = 10)
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Figure 5. Numerical and analytical solution to problem (2)
at a certain time step. (Reynolds' number = 10)
(0 - numerical solution, - analytical solution)
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3 Burger's Equation
The normalized Burger's equation in one-dimension is

Ut + U(Ux) - Uxx/Re = 0.0 0

This model is a good test of the codes for eventual use for
solving the Navier-Stoke's equation since it represents the
simplest case where there exists both the viscous and the non-
linear convective terms (Wadia & Payne (1979)). This equation
is solved numerically with the initial condition:

U(x,0) = sin(m*x), 0<x<1 (8)
and the boundary condition
Uuon=0U(1)=00 20 9

Numerical solutions obtained in this paper correspond to
Re = 100 and a time step size of 0.0001 sec. These results are
shown in Figure (6) and Figure (7). The results obtained show
good agreement with the numerical results obtained by Wadia
and Payne (1979). The results show that the initial sine wave
shows a tendency to develop into a steep front near the
normalized value of x =1 as time progresses. After a while,
this steep front broadens because of viscous dissipation and
eventually only a sine wave remains. The eventual sine wave
obtained is of a much smaller magnitude than that of the initial
one due the viscosity of the fluid. This observation also
corresponds very well with the qualitative description given by
Cole (1951).
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Figure 6. Nunlwrical solution to Burger's equation (Reynold's number for
this problem is 100 and the time step size used is 0.001 sec, each line
represents a time interval of 0.1 sec)

Figure 7. Numerical solution to Burger's equation (Reynold's number for
this problem is 100 and the time step size used is 0.001 sec, each line
represents a time interval of 1.0 sec)



CONCLUSION

The results presented in this paper show the effectiveness
of the pseudospectral method to unsteady flow problems. The
main conclusions are: '

(1)  The choice of the interpolating functions are very
important in solving non-linear differential equations. In
the cases described in this paper, the use of the Chebyshev
polynomial facilitates the use of the FFT in the
transformation from physical to spectral space and vice
versa. This not only simplifies the codes but is also very
time-efficient.

(2) An unevenly spaced mesh is obtained when one uses
Chebyshev polynomial as the interpolating functions. The
meshes are closely spaced at the end points and sparse in
the middle. This is desirable especially when modelling
unsteady boundary layer flow where the activities are
located very close to the plate. This is clearly shown in the
numerical solution to problem (2).

(3) The use of global data for the calculation of the
derivatives gives a very good estimate of the spatial
derivatives. Care, however, must be taken when handling
discontinuities.
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