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ABSTRACT

The three-dimensional aspects of transition in a low
Mach number plane compressible wake are studied nu-
merically. Comparisons are made between the topology
of the velocity field and the vorticity dynamics of the flow
based on results from direct numerical simulations of the
full compressible Navier Stokes equations. The velocity
field is integrated to obtain instantaneous streamlines at
different stages in the evolution. A generalized three-
dimensional critical point theory is applied to classify the
critical points of the velocity field.

1. INTRODUCTION.

A description of the three-dimensional topology of a
wake using critical point theory provides a concise frame-
work for interpreting the voluminous amount of numeri-
cal data that results from a three-dimensional simulation.
The critical points are points in the flow where any vec-
tor field, such as velocity, vorticity, or pressure gradient
is indeterminate, i. e. the norm of the vector field at the
critical points is zero. Recently, Chong, Perry, & Cantwell
[1988] devised a generalized approach for the classification
of three-dimensional flow patterns for incompressible as
well as compressible flows. Their approach is based on the
determination of three matrix invariants (P, Q, and R) of
the gradient tensor of the vector field used to describe
the flow. These invariants identify topologically distinct
regions of the flow.

Previous studies concerning the topology of wakes and
jets have relied on 2D phase plane methods applied to
a velocity field. Based on these methods and sectional
streamline patterns, there is some evidence that the flow
pattern for a three-dimensional wake may consist of “limit
cycles” of the type described in Perry & Tan [1984] and
Perry & Steiner [1987]. These limit cycles are bifurca-
tion lines which have closed on themselves. Based on the
presence of both foci spiraling inward and foci spiraling
outward, Perry & Steiner [1987] conjectured that regions
of vortex stretching and vortex compression can coexist
in a three-dimensional wake. Recent results of direct sim-
ulations also show the presence of both vortex compres-
sion and stretching regions in a three-dimensional wake.
In Chen, Mansour, & Cantwell [1989] localized regions of
vortex compression alternating with localized regions of
vortex stretching inside the spanwise rollers were identi-
fied. The strong compression regions were attributed to
large negative strain rates generated by a quadrapole of
streamwise vorticity located inside the spanwise rollers.
The effect of the spanwise variation in strain rate is to
produce “hoop-like” vorticity structures similar to those
which appear in incompressible 3D mixing layers (Rogers
& Moser [1989)).

In the present werk, the topology of a 3D compressible
wake is determined by classifying the critical points in the
flow associated with the velocity vector field. The vorticity
and pressure gradient vector fields have also been studied
but are presented elsewhere due to limitations in space
(Chen [1989]). The critical points of the velocity field are
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located and classitied according to the three-dimensional
method of Chong, Perry, & Cantwell [1988]. The fol-
lowing issues are addressed in this paper. What is the
topology of a 2D compressible wake in both its early and
fully-developed stages? What is the difference in topology
of a 3D wake compared with a 2D wake? Do “limit cycles”
exist, and if so what is their relation to other topological
features in the flow? Finally, can the topology of the ini-
tial linear eigenfunctions be used to explain the nonlinear
development of the vorticity and strain rate fields?

2. NUMERICAL METHOD

Only a brief description of the numerical method is
given here since details of the method are presented in
Chen [1989]. In our direct simulations we solve the com-
pressible continuity, momentum, and total energy equa-
tions in full using a spectral collocation method. The
wake is assumed to evolve temporally which is related to
the spatially-evolving wake through the Taylor hypothe-
sis. The perfect gas equation of state is used. The dy-
namic viscosity (u) is allowed ta vary with temperature
through a power law: g = T%3. The Prandtl number
is taken to be 1.0 and the specific heat at constant pres-
sure is assumed to be constant. Therefore, the thermal
conductivity also varies with temperature.

Since we are dealing with a time-developing flow, initial
conditions need to be prescribed. Here, the initial flow is
assumed fo consist of Gaussian mean velocity profile given
by

U=1- Au.,t:_"“:§ (1)
where Au, is the velocity deficit at the wake centerline, ¢;
is a scaling factor, and =z, is the distance from the center-
line (the normal coordinate). We choose ¢; to be 0.69315
in order to make the initial wake half-width, b, equal to
1.0, and the initial velocity deficit at the wake centerline,
Aug, equal to 0.692 corresponding to the measurements
by Sato & Kuriki [1964].

From the Crocco-Busemann relation, the dependence
of the mean temperature, T, on %; is obtained

T=1+05M%y-1)(1-1°) (2)

where M denotes the freestream Mach number. In this
work all length scales have been normalized by the initial
half-width, b, all velocities have been normalized by the
freestream velocity, Uy, temperature and density have
been normalized by their freestream values, and pressure
has been normalized by pUZ..

The simulations are forced with linear eigenfunctions
obtained from a linear stability analysis (Chen, Cantwell,
& Mansour [1989]). The least stable 2D Kelvin-Helmholtz
wave, together with a pair of oblique 3D waves of equal
and opposite angle, are superimposed on the mean flow
at the beginning of a simulation:



b(z1,72,23,0) = b(z2) + Real [emf)m(zg )e’—('”""e)
+ &p BsD(mz)ei(ﬂ=1+Bra}

- esDBaD(:cz)e'("“‘s’”]

(3)
where the vector b denotes the three velocity components,
temperature, and density, b denotes their mean parts,
and byp and bsp denote the eigenfunctions of the 2D
and 3D disturbances. The 2D eigenfunctions correspond
to a streamwise wave number, a, of the least stable wave
predicted from linear stability theory. The 3D eigenfunc-
tions correspond to a pair of oblique waves, with spanwise
wave numbers, +f, and a streamwise wave number, «,
corresponding to the fundamental. The angle the oblique
waves make with the streamwise direction is assumed to
be 30 degrees. The relative phase difference between the
2D and oblique waves, ©, is assumed to be 0 degrees. Fi-
nally, the amplitudes of the eigenfunctions, €;p, and e3p
are chosen to be 5% of their freestream values.

The temporally-evolving wake is solved with z; in the
streamwise direction, z» in the transverse direction, and
T4 in the spanwise direction. Periodic boundary condi-
tions are applied in z; and z3, since the flow is statistically
homogeneous in the'(z;-z3) planes. Periodic freestream
boundary conditions are applied in 3 at z; = foo0.

3. VELOCITY FIELD

In this section, the results of a Mach 1.0, Re=300 sim-
ulation are used to illustrate the topological features in a
wake.

2D streamline patiern

First we examine the flow pattern for a 2D wake which
serves as a baseline case with which to compare the 3D
flow patterns. The critical points of the velocity field are
located corresponding to the grid points where the mag-
nitude of the velocity field is zero. The velocity field is
then expanded ina Taylor series about each critical point.
The gradient of the velocity vector field, evaluated at each
critical point, is obtained by spectral differentiation of the
velocity field. The two matrix invariants of the velocity
gradient tensor, P and Q, are found and displayed on a
phase diagram shown in Figure 1. The critical points in
the flow consist of stable foci and saddle points. Cen-
tres (P = 0) can not exist since the velocity field is not
solenoidal at Mach 1.0. In physical space, the relation of
the foci and saddle points is shown in Figure 2a in a plot
of the instantaneous streamlines obtained by integrating
the velocity field. The observer is assumed to move at the
phase speed of the 2D linear disturbances, ¢,5 = 0.71,
obtained from a linear stability analysis. Initially, note
that the saddle points, representing regions of high strain
rates, connect foci on the same side of the wake. This is a
different topology from the developed wake in which the
saddle points connect spanwise rollers of opposite sign. To
verify that there is no interaction between the two sides
of the wake initially, we start several rake points in the
streamwise direction, all located in the “alleyway” near
the centerline where the fluid is moving upstream. The
streamlines originating in the upper side of the alleyway
all wind up in the upper side of the wake, whereas, those
originating in the lower side of the alleyway, all wind up in
the lower side of the wake. This confirms our conjecture
that the wake behaves as two independent mixing layers
initially in which fluid in the spanwise rollers is entrained
from both the freestream and the slower moving fluid lo-
cated in the alleyway. Eventually the fluid in the alleyway
will be exhausted as it is entrained into the rollers, and at
this point, the topology must bifurcate in order for mass
to be conserved.

The instantaneous streamlines at t = 40 after the fun-
damental has saturated are shown in Figure 2b. Note
that now the saddle points connect both sides of the wake
and the fluid initially in the alleyway has collapsed to a
line dividing the two sides of the wake. In the developed
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wake fluid in the spanwise rollers is entrained from the
freestream and from the opposite side of the wake.

8D streamline pattern

The instantaneous streamline pattern for the 3D case
is shown in Figure 3 at ¢ = 0, and at ¢ = 25 during the
nonlinear roll-up stage. As in the 2D case, initially the
observer is assumed to move at the phase speed of the
disturbances. After the spanwise vortices have rolled-up
the observer is assumed to move with the centroid of the
rollers. For the case studied here, the phase speed for
the 2D and 3D disturbances is the same, ¢;p = 0.71. At
t = 0, we initialize the rake points in the two spanwise
planes of symmetry, 3 = 0 and 3 = L3/2. Note that
in both planes, there are foci and saddle points connect-
ing foci on the same side of the wake similar to the 2D
case. However, the foci on the same side of the wake at
23 = 0 and 23 = L3 /2 are spiraling in opposite directions.
The velocity vectors projected onto these two planes are
shown in Figure 4. Note that in both planes the veloc-
ity vectors are moving in a clockwise direction in the top
half of the wake and in a counterclockwise direction in
the bottom half of the wake. Therefore, the streamlines
are spiraling outward on both sides of the wake at z3 =0
and inward at 3 = L3/2. In Figure 3a, note that at the
center of each foci there is a single streamline that leaves
the symmetry plane and connects the foci at z3 = 0 and
z3 = L3/2 on the same side of the wake. In principle,
these connections should not exist since the spanwise ve-
locity component, uz should be identically zero on the
symmetry planes. However, since the velocity vector is
very nearly singular near the center of the foci, any slight
perturbation in our computation of the streamlines due
to numerical round-off error could cause them to deviate
from the plane of symmetry. Since the spanwise veloc-
ity is nonzero on either side of the symmetry planes, a
very small distance away from the symmetry planes, the
streamlines near the center of the rollers have a strong
spanwise component since the streamwise and transverse
velocities, u; and uy, are very small.

At t = 25, rake points are initialized in the symmetry
planes z; = 0 and z3 = L3/2 and a similar pattern of
oppositely spiraling foci appear. The saddle points at
z3 = 0 appear to connect foci on opposite sides of the
wake, whereas the saddle points at 23 = L3 /2 still connect
foci on the same side of the wake. This is an indication
that the wake rolls-up at different rates along the span.

If rake points are initialized in between the planes of
symmetry, then a “limit cycle ” emerges (see Figure 5).
Along the inner radius (r;) the streamlines are spiraling
toward 3 = 0 in a helical manner; as they approach
z3 = 0 they return toward z3 = L3 /2 on the outer radius
ro where r; > 1, forming a closed cylindrical cell.

Based on the streamline patterns at ¢ = 0 and ¢ =
25 there appear to be three different types of critical
points present: 1) compressing unstable foci at z;3 = 0,
2) stretching stable foci at z3 = L3/2, and 3) saddle

points in between the foci in each plane. We compute the
three invariants of the velocity gradient tensor and clas-
sify the critical points using the method of Chong, Perry,
& Cantwell [1988]. The critical points are displayed on
a P-Q diagram shown in Figure 6. The topology of the
velocity field indicates that there are spanwise regions of
localized vortex compression alternating with regions of
vortex stretching in what will eventually develop into the
spanwise rollers. A comparison of the vorticity and strain
rate fields with the initial streamline pattern will show
that some of the nonlinear aspects of the wake are topo-
logically equivalent to the initial linear behavior.

4. VORTICITY FIELD

During the early stages of roll-up the behavior of the
streamwise vorticity in the saddle region is consistent with
the initial 3D streamline pattern (see Figure Ta). Note
that the streamwise vorticity is stretched by the strain
field generated by spanwise vorticity of the same sign.



The streamwise vorticity at ¢ = 18 resembles the “ribs”
seen in mixing layers. At a subsequent time ¢ = 40 a
comparison of the streamline pattern and the streamwise
vorticity indicates that the strain field is between adjacent
spanwise rollers of opposite sign (Figure 7b). Namely, the
topology has changed such that the saddle points now
connect foci on opposite sides of the wake.

While vortex stretching accounts for the intensification
of the streamwise vorticity in the saddle point region, it
also plays a significant role in the development of the

spanwise rollers. Spanwise alternating regions of local-.

ized vortex compression and stretching were found to exist
near the center of the spanwise rollers during the nonlin-
ear stages (Chen, Mansour, & Cantwell [1989]). Strong
negative strain rates at z3 = 0 result in vortex compres-
sion removing spanwise vorticity (w3) in the center of an
otherwise uniform roller. The vortex stretching term re-
sponsible for the production of spanwise vorticity, Saaws,
along with w; are shown in Figure 8. Note that the span-
wise vorticity is removed in the center of the core leaving
behind a concentration of vorticity on the perimeter of
the roller resembling a “hoop”. The existence of stretch-
ing stable foci (at £3 = L3/2) and compressing unstable
foci (at 23 = 0) in the initial topology of the velocity field
may explain the spanwise nonuniformity in the developed
rollers.

5. CONCLUSIONS

In this work the topology of a compressible plane wake
was studied using a generalized three-dimensional critical
point theory applied to both 2D and 3D velocity fields.
It was found that initially the wake behaves as two in-
dependent mixing layers separated by an alleyway. After
the fluid in the alleyway is entrained into the rollers, the
topology changes such that the saddle points no longer
connect foci on the same side of the wake, but instead,
connect foci on opposite sides of the wake.

The initial topology of the 3D velocity field was found
to consist of: 1) stretching stable foci, 2) compressing un-
stable foci, 3) saddle points, and 4) limit cycles. The de-
veloped spanwise vorticity field was found to be topolog-
ically equivalent to the initial 3D velocity field. Namely,
spanwise alternating regions of vortex stretching and vor-
tex compression in the developed vorticity field are an
extension of the critical points of the initial linear eigen-
functions.
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FIGURE 1. CLASSIFICATION OF CRITICAL POINTS ON A
P-Q DIAGRAM FOR A 2D WAKE AT Re = 300, M =
1.0.

(a)

FIGURE 2. INSTANTANEOUS STREAMLINES FOR 2D WAKE
AT Re =300, M = 1.0 (a)t=0,(b)¢t=235.




FIGURE 6. CLASSIFICATION OF CRITICAL POINTS ON A
(a)P-Q DIAGRAM (R>0), AND (b)P-Q DIAGRAM
FOR (R<0) FOR A 3D WAKE AT Re = 300, M =1.0.
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FIGURE 3. INSTANTANEOUS STREAMLINES FOR 3D WAKE
AT Re =300, M =1.0. (a)t =0, (b) t = 25.
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FIGURE 7. STREAMWISE VORTICITY (w1) IN A 3D WAKE
AT Re =300, M = 1.0. (a) t = 18.0, (b) t = 40.0.
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FIGURE 4. PROJECTED VELOCITY VECTORS AT £ = 25
Re =300, M =1.0. (a) z3 =0, (b) z3 = L3 /2.
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FIGURE 8. (a) VORTEX STRETCHING TERM, S33ws, AT
FIGURE 5. INSTANTANEQUS STREAMLINE INITIALIZED AT 40% OF PEAK VALUE, (b) SPANWISE VORTICITY MAG-
z3 = L3 /8 ILLUSTRATING “LIMIT CYCLE” BEHAVIOR

NITUDE AT 50% OF PEAK VALUE SHOWING “HOOP-
AT t = 25, Re = 300, M = 1.0. LIKE” STRUCTURE.
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