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ABSTRACT

The 3-D Navier-Stokes equations are used in
both a space - and time - marching finite
difference code to calculate the hypersonic flow
past winged bodies. The bodies are : (1) a blunt
ogive-cylinder with a delta wing planform and
(2) an elliptical body referred to as the allbody
configuration. The grids used for the above
configurations were generated with a hyperbolic
grid generator. A laminar flow solution for the
ogive-cylinder-wing body at a M = 25, &« =3
deg., and a q = 1000 I1b/ft**2 is presented.
Finally, a M = 7.4, a = 0,10 deg., laminar flow
solution for the allbody configuration is also
presented.

INTRODUCTION

There is a great deal of interest in the
development of future hypersonic cruise aircraft
which would serve the Pacific rim countries by
the turn of the century.

In designing these vehicles, the aerodynamic
loads and the aerothermodynamics of the
configurations need to be known accurately in
the hypersonic flight regime. This is important
from the stand point of the economics of the
design. The more accurately the flowfields are
known the lighter the aircraft can be designed
which translates into more fuel efficient vehicles.

Computational fluid dynamics (CFD) then
becomes an important tool in this design process
since an immense amount of flowfield data can
be readily computed accurately. Several
numerical efforts have been done recently in the
area of hypersonic simulations and include for
example the works of Edwards (1989)
Yamamoto (1988), Corda et al (1988), and Kroll
et al (1989). In addition, experimental work is
increasing in intensity to provide data for
validating and calibrating - the CFD tools, i.e.
Nomura et al (1988). While the above list of
researchers is not comprehensive, it does serve
to give an idea of the type of work being
concluded throughout the world.

NUMERICAL SCHEME

The time marching algorithm (Rai et al, 1986)
which is known as the UWIN code consists of the
following physics and numerics. The thin-layer
Navier-Stokes equations are solved numerically
in a conservation law form to allow for proper
shock capturing. The kinematic viscosity is
determined from Sutherlands law and the
algebraic model of Baldwin-Lomax (1978) would
be used for turbulent calculations.

The implicit numerical algorithm is either a Roe
or Osher upwind formulation with second order
spatial and first order temporal accuracy. In
addition, there is a secondary Newton iteration
at each time step that permits the solution of the
fully implicit finite difference equations. To
capture strong shock waves, a TVD formulation
of Rai (Edwards 1989) has been incorporated
into the algorithm. Also, a zonal approach (Rai
1985) is included within the framework of the
code. This consists of two zones each of which
can be an independent grid with communication
between the two zones occurring across the grid
interface. The standard boundary conditions are
used. These consist of no slip and a specified wall
temperature at the surface. At the outer
boundary, the freestream conditions are
specified and held fixed during the time iteration
process. At the inflow boundary, a specified
plane of data is held fixed. In this work, the
plane of data was created by a space marching
PNS code of Chaussee (1988). At outflow, a
zeroth outer extrapolation of the conservative
variables is used.

GRID GENERATION

The 2-D hyperbolic grid generator is of a type
developed by Steger and Chaussee (1980). The
technique marches the points away from the
body for a specified number of steps. There is
some control over the outer boundary location
through the specification of control volumes.
Internal iterations are used to keep grid lines
from crossing as the grids are marched away
from the body. This is necessary if there are
concave corners in the geometry. In the final
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step, the radial lines are accepted and a
redistribution of points is done based on a
specified stretching function.

RESULTS

Blunt-Ogive-Cylinder-Wing

The first case is the hypersonic flow past an
ogive-wing-cylinder. The flow conditions are M
= 25, a = 3 deg. and the dynamic pressure q =
1000 1b/ft**2. The wall is considered to be cool
and a wall temperature is specified accordingly.
In this case, the total number of grid points used
in the calculation on the wing-body are 80 x
182 x 50 The forebody (the ogive-cylinder
nose) solution was obtained using a 19 x 37 x 54
grid. In the description of the grids the first
parameter is the axial location, the second is the
meridional direction , and the third is the radial
direction. A time dependent blunt body code
was used to obtain the starting solution at the
nose tip of the vehicle. In Fig. 1, the forebody
solution is presented for both the crossflow
plane and the lee plane of symmetry. The bow

X = 575"

X = 65™ TO 605"

Figure 1. Pressure contours on the forebody

shock wave is captured and is located by the
coalescence of the pressure contours. In Fig. 2,
the velocity vectors are presented. A very small
reverse crossflow component is visible at an X =
600". The velocity vectors on the leeside show
the effect of the viscous phenomena due to the
angle of attack of this case.

The wing-body part of the solution is presented
next. Figure 3 presents representative cross-
sections showing the versatility of the 2-D
hyperbolic grid generator. The grid generated is
nearly orthogonal. Since the Navier-Stokes
equations are cast in a thin-layer form, the
optimal grid is of the wrap around type with
sufficient clustering at the surface even near
concave and convex corners as shown in the
figure.

6.38

VELOCITY VECTORS

X = 600" I

LEE SIDE PLANE

X = 500" TO 600"

Figure 2. Velocity vectors on the forebody
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Figure 3. Axial grids at various cross sections.

Pressure contours at various cross sections are
presented for the wing-body in Fig. 4. Some of
the main features of the flowfield are the
strength of the wing shock and the location of
the bow shock. Both of the sharp discontinuities
are captured by the TVD algorithm of the UWIN
code. During the space evolution of the cross
sections, the formation of the wing shock and its
penetration of the bow shock at an X = 973" are
observed in the figure. This demonstrates the
shock-shock interaction capturing capability of
the code.



PRESSURE CONTOURS

X = 660" X = 808" X =928"

X =973"

X = 1168" X = 1330"

Figure 4. Pressure contours at various cross
sections for the winged body.

Figures 5 and 6 present crossflow velocity
vectors at different axial stations. In Fig. 5, at an
X = 958", a vortical structure on the leeside is
apparent. On the windside, due to the pressure
gradient, the flow is migrating towards the
windward plane of symmetry. The crossflow
velocity vectors at X = 1330" are presented in
Fig. 6. The location of the bow and wing shocks
are observed by the change in direction of the
velocity components. In addition, a crossflow
circulation is noted on the leeside and with flow

VELOCITY VECTORS

X - 958“

Figure 5. Crossflow velocity vectors.
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Figure 6. Crossflow velocity vectors.

towards the windward pitch plane also occurring
at this cross section.

Allbody Configuration

The last case consists of the hypersonic flow past
an allbody configuration. The body consists of
an elliptical cone in the forebody and a series of
elliptical cross sections in the afterbody region.
The axial break occurs at 2/3rds the length of
the vehicle. The flow conditions are M = 7.4, a
=0 and 10 deg. and a specified wall temperature
of 560 deg. R. The grid density is 17 x 92 x 44
(same nomenclature as in the previous case).

In Fig. 7, the contours of pressure are presented
at a cross section near the aft end of the allbody
configuration.  The angle of attack is 0 degrees.
The bow shock is captured and is located at the
coalescence of the pressure contours. A pressure
expansion emanating from the slope change at
the 2/3rds point is also visible between the body
and bow shock wave.

PRESSURE CONTOURS

Figure 7. Pressure contours in the cross section



The contours of pressure are presented at a cross
section near the aft end and also are presented
on the windward plane of symmetry for an angle
of attack of 10 degrees in Fig. 8. Again the bow
shock wave is visible in both planes as the
coalescence of the pressure contours. Since the
vehicle is at an angle of attack, the expansion
due to the slope change is visible on the
windward side only. The profile view of the
vehicle shows the extent of the expansion as it
extends downstream from the corner.

PRESSURE CONTOURS

Figure 8. Pressure contours in the cross section

SUMMARY

The 3-D Navier-Stokes equations are used in
both a space - and time - marching mode to
calculate the hypersonic flow past winged -
bodies. It has been shown that the present
technique has an excellent shock capturing
capability for all speed regimes. In addition, an
axial zonal capability is incorporated to make the
procedure more versatile. The grid system is
created offline using an efficient hyperbolic grid
generator which can handle the rapid variations
in the body cross sections.
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