TENTH AUSTRALASIAN FLUID MECHANICS
CONFERENCE - UNIVERSITY OF MELBOURNE
11-15 DECEMBER 1989

3B-3

NEAR-FIELD STRUCTURES IN THREE-DIMENSIONAL SPATIALLY-DEVELOPING WAKES

Jeffrey C. BUELL! and Nagi N. MANSOUR?

1Center for Turbulence Research, NASA Ames Research Center
Moffett Field, CA 94035, USA

2NASA Ames Research Center
Moffett Field, CA 94035, USA

ABSTRACT

The effects of three-dimensional perturbations on a
spatially-developing plane Gaussian wake are studied and
quantified using a new numerical code. Results are pre-
sented for a relatively simple case since it appears that no
3-D spatially-developing simulations of plane wakes have
been performed in the past. The inlet perturbation con-
sists of a 2-D time-periodic forcing plus a spanwise-periodic
array of steady streamwise vortices. The distortion of the
2-D vortices caused by the streamwise vortices will be dis-
cussed. The vorticity fields are compared to passive scalar
fields which simulate the injection of smoke or low heat
into the wake.

1. INTRODUCTION

In this paper we examine the effects of three-dimensional
(3-D) perturbations on a spatially-developing plane Gaus-
sian wake at a moderate Reynolds number. Very few 3-D
simulations of wakes have been performed in the past. Ri-
ley & Metcalfe (1980) performed a direct numerical simu-
lation of the temporally-developing turbulent wake of an
axisymmetric body using experimental data for the ini-
tial conditions. Although the mesh was coarse, low-order
statistics compared well with the experiments. Meiburg
& Lasheras (1988) reported results from wake experiments
with different types of spanwise forcing and computed the
flow using inviscid vortex dynamics calculations. It is dif-
ficult to use the latter to study small-scale details of free-
shear flows, but they were able to reproduce the large-scale
features of the experiments. More recently, Chen et al.
(1989) performed well-resolved simulations of a compress-
ible plane wake. Their main goal was to determine the
effect of Mach number on the development of the wake,
but they also described the development of 3-D structures
which should be similar to the incompressible case.

In this work we present results for a relatively simple
case where two different kinds of perturbations are added
to a Gaussian mean inflow profile. The first is a two-
dimensional (2-D) time-periodic forcing where the profiles
for u (the streamwise velocity) and v (vertical velocity)
are the eigenfunctions of the corresponding Rayleigh equa-
tions. Any frequency near the most amplified one produces
the classical Karman vortex street. The second kind of per-
turbation is a spanwise-periodic array of counter-rotating
streamwise vortices. These are assumed to be steady as
they might be in a wind tunnel with small nonuniformities
in the last screen. As in the mixing layer and other shear
flows, the streamwise vortices (usually referred to as ribs)
are amplified by the strain field of the 2-D spanwise vor-
tices (rollers). When the ribs become sufficiently strong,
they distort the rollers through advection and strain ef-
fects. These effects will be contrasted with a 2-D simula-
tion sans ribs. In addition, a passive scalar with a Gaussian
profile is introduced at the inflow. It is often assumed in
the experimental literature that smoke or heat introduced
in the wake will follow the vorticity. The degree to which
this is true will be tested in both the 2-D and 3-D simula-
tions.

2. NUMERICAL METHOD

In this section we briefly describe a new algorithm for
approximately solving incompressible spatially-developing
free-shear problems on a domain that is infinite in the verti-
cal (y) direction and finite in the streamwise (z) and span-
wise (z) directions. The numerical method is analyzed in
more detail elsewhere (Buell 1989).

Using the curl operator, the 3-D Navier-Stokes equations
are reduced to equations for the streamwise velocity u and
vorticity w1 (“fourth-order form”). These equations are
advanced in time explicitly using a compact third-order
Runge-Kutta scheme (Wray 1989). Since the Laplacian is
contained in the time-derivative term, a Poisson equation
must be solved for » during each substep. The dependent
variables are expanded in either cosine or sine series in a
mapped vertical coordinate { (where y = —f cot(w() maps
[—o0, 0] to [0,1]), and periodic Fourier series in z. The
z-derivatives are approximated with modified Padé finite
differencing due to Lele (1989). The nonlinear terms are
evaluated in physical space. For the spectral directions (y
and z) this requires FFT’s to and from wave space. More
collocation points are used in physical space than modes
in wave space in order to control aliasing errors.

The equations are nondimensionalized by scaling with
the half-thickness § of the Gaussian mean inflow velocity
profile and with the freestream velocity Uy. The Reynolds
number based on these scales is defined by Re = Uyd/v =
400, and the inflow profile by U (y) = 1— ) exp(—.69315y%),
where A = 0.692 is the velocity defect (corresponding to
the experiments of Sato & Kuriki 1961). The other nondi-
mensional parameter of the problem is the Schmidt number
Sc=v/D =1, where D is the diffusion coefficient of the
passive scalar,

Dirichlet boundary conditions are specified for the ve-
locity perturbation at the inflow. 2-D Rayleigh equation
eigenfunction profiles at a frequency of 0.5 and an am-
plitude of 0.06 are used for the streamwise and vertical
velocities (v and v). The maximum growth rate occurs
at a frequency of 0.614, but the lower value was used to
compensate for the viscous thickening of the wake down-
stream. For the 3-D simulation steady profiles for » and
the spanwise velocity w are added at the inflow to produce
streamwise vorticity:

wi(z=0,y,2) = (.034/k) (2 + k* — 4y*) e’ sin(kz),

where k = 27/L, is the spanwise wavenumber, and L, is
the spanwise domain length. It has been observed that
in mixing layers the spanwise wavelength is about 2/3 of
the streamwise wavelength, so by analogy we chose L, = 6
for the present work. This yields a maximum streamwise
vorticity of 0.10 at the inflow. At the exit plane, each ve-
locity component is required to satisfy a “convective” out-
flow boundary condition of the form 8¢ /dt = —c 84 /0z,
where ¢ = 0.9 is the approximate speed of the large struc-
tures near the exit. At infinity, all perturbations are set to
zero.
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FIGURE 1. Contours of spanwise vorticity for the 2-D case. Contour interval is 0.1. Dashed lines denote negative

levels, solid lines denote positive levels.
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Figure 2. Contours of spanwise vorticity for the 3-D case at (a) z =0 and () 2 = 3. Contour interval is 0.1.

The length of the computational domain is L, = 70 and
the vertical mapping parameter is § = 6. The mesh is
384 x 128 x 24 (grid points in =, Fourier modes in y and
z). Most of the aliasing errors were eliminated by using a
collocation grid in the spectral directions of 160 x 32.

3. VORTICITY DYNAMICS

Shown in figure 1 are contours of spanwise vorticity (ws)
for the base-line 2-D case. The formation of a vortex street
consisting of alternating-sign vortices (rollers) is clearly
seen. A consequence of conservation of angular momentum
is the formation of “spiral arms” around each vortex; not
all the vorticity can roll up into the vortex cores. Farther
downstream these arms diffuse away, leaving nearly circu-
lar vortex cores. Note also the near-symmetry between the
upper and lower vortices.

Contours of ws for the 3-D case are plotted in figure 2
in the two z-y symmetry planes (where w; = 0). These
planes are each between a pair of counter-rotating stream-
wise vortices. Qualitatively the same structures appear
as in the 2-D case, but there are important quantitative
differences. Considering the row of vortices along the top
(negative ws3), we see that the flow starts off very much
like the 2-D flow, but by = = 20 significant distortion in 2z
appears. At z = 0 the peak vorticity is on the inside edge
of the rollers, while at z = 3 the peak vorticity is on the
outside edge. This cannot be an advection effect since by
z ~ 40 the peak value of w3 reaches -0.8 (at the inflow it is
about -0.5). Thus the variation in z must be due to vortex
stretching effects. This enhancement of vorticity occurs at
all z locations but is most pronounced at z = 0. Beyond
r ~ 35, a different process from the one responsible for
the above enhancement becomes dominant. At z = 3, the
maximum vorticity amplitude drops suddenly by z = 40,
then rises to nearly its previous level by = = 60. At z =0,
a small, intense and nearly symmetric elliptic roller forms
by # = 40. This is followed by a suppression of vorticity

on one side of the center of the roller so that a nearly ir-
rotational region is imbedded inside the roller by =z = 60.
Because of the symmetry in the inflow conditions, all of
the above comments for the upper row of vorticesat z = 0
and z = 3 apply to the mirror image in y of the lower row
at z = 3 and z = 0, respectively.

Some of the mechanisms for the enhancement and sup-
pression of w3 in certain regions are evident from an ex-
amination of the streamwise (w;) and vertical (wz) com-
ponents of vorticity, shown in figure 3 at z = 1.5. Both
components develop very quickly up to about z = 25, then
decay slowly thereafter. At z = 1.5, w; is positive at the
inflow and leads directly to the formation of ribs with the
same sign. These ribs can be divided into two sets; those
with positive wy; and those with negative. For z < 20 the
former are clearly associated with the upper rollers and
the latter with the lower rollers. During the growth phase
of the ribs, they connect spanwise vortices of like sign (see
Chen et al. 1989).

In the early development of the wake, the ribs are in-
tensified by the 2-D strain field of the main rollers (as in
mixing layers), but this mechanism cannot increase the
circulation around a rib. However, since the radius of the
ribs remains about constant, the circulation increases sig-
nificantly. The mechanism for this is the “conversion” of
w3 into w; by one of the “vortex stretching” terms of the
wy equation: Gw; /8t = ...+(8u/8z)ws+... The opposite-
sign w; near the rollers is due to the 3-D distortion of the
rollers by the ribs and, as opposed to the ribs, does not
see the large 2-D strain field caused by the rollers. In fig-
ure 2 note that the main effect of the 3-D distortion of w3
for < 35 is the enhancement of vorticity along one side
of a roller and suppression along the opposite side (both
due to the vortex stretching terms produced by the ribs),
thus shifting the peak vorticity towards one side. In the
z-plane on the other side of a particular streamwise vortex,
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FIGURE 3. Contours of (a) streamwise vorticity and () vertical (cross-stream) vorticity corresponding to figure

2 at z = 1.5 Contour interval is 0.1.
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FIGURE 4. Contours of streamwise
and (e) z = 63.5. Contour interval is 0.05.

the peak vorticity is shifted to the other side of the same
spanwise roller. Due to this distortion, the vortex lines in
the rollers will have an z (as well as a y) component. Far-
ther downstream, one end of each rib becomes increasingly
associated with a roller on the opposite side of the wake.
Also, they tend to stand nearly vertical, in contrast to a
typical rib angle of 45° for z < 25 and for mixing layers.
This transition coincides with the end of the growth of the
ribs and the beginning of their decay.

Shown in figure 4 are spanwise (2z-y) cuts of w; at five
z locations. The first plot shows the inflow forcing, and
the others show cuts through the upper rollers. Note that
in either half of the domain (e.g., 0 < z < 3), the mag-
nitudes of the positive and negative streamwise vorticity
are about the same even though there is only one sign
at the inflow. For z < 40 the ribs (the lowest and high-
est pairs of vortices in figures 4(b-¢)) have the characteris-
tic shape of “non-collapsed” vortices — elliptical and tilted
from the horizontal (see Lin & Corcos 1984). This is a
relatively stable state. Farther downstream they begin to
show signs of collapse to small, round and more intense
vortices (however, a higher Reynolds number is needed to
see this clearly). Comparing figures 2(a) and 2(}) at z = 29
to figure 4(b) we note that the regions of enhanced w; are
located in the middle of positive strain regions created by
wi-quadrapoles. Similarly, regions of w; suppression are
also located in the middle of quadrapoles, but where the

z

4
vorticity in z-y planes at (a) z =0, (b) ¢ = 29, (¢) =z = 40.5, (d) = = 52,

strain is negative. Further, half of the w; vorticity involved
is associated with ribs while the other half is due to the
distortion of the rollers. By z = 40 (figure 4(c)), several
changes in the structure of the flow have occurred. The
ribs and rollers have moved away from one another so that
the former are not a part of one of the above-mentioned
quadrapoles and do not appear to significantly contribute
to the strain in the vicinity of the rollers. Instead, new w;
is created within the rollers, which are then strained in a
different manner than before. One can follow the evolution
of wy and see that the quadrapoles it forms are responsible
for the changing distribution and intensity of w;.

A perspective view (figure 5) of the rollers located be-
tween z = 40 and & = 60 shows part of the evolution of w;.
In figure 6 two perspective views of vortex lines initiated in
the ribs located at @ = 28 and z = 34 show the formation
of vortex loops. Since both signs of ws are needed to close
the loops, the ribs must connect opposite-signed vortices.
Farther upstream, vortex lines continue all the way across
the span and are not closed, suggesting the ribs connect
vortices of like sign. We note also that the vortex loops
originally associated with the bottom half of the wake (one
of which is shown at the left in the plots of figure 6) are
all lined up and centered at z = 3 while the upper ones
are centered at z = 0 (or, equivalently, z = 6). Introduc-
ing time-periodicity into w; at the inflow will create other
patterns of loops.
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FIGURE 5. Perspective view of |ws| corresponding to figure

2 in the range 40 < z < 60. Contour level is 0.35.
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FIGURE 6. Top view of vortex lines initiated in the ribs
at ¢ = 28 and z = 34. z axis extent is 28 < z < 40.

z
FIGURE 7. Passive scalar contours for the (o) 2-D case, and (b) 3-D case at z = 0. Contour interval is 0.1.

4. PASSIVE SCALAR CONVECTION

Experimentally, one often introduces smoke or heat as a
passive scalar into the wake in order to trace the vorticity.
Of course, this is only an approximation unless the flow
is 2-D, the Schmidt number is unity, and the inflow pas-
sive scalar profile is identical to the vorticity profile. We
tested this approximation here for both the 2-D and 3-D
cases, using a Gaussian profile (with half-width 0.833) to
model the injection of a passive scalar. Shown in figure
T are the results for the 2-D case and for the 3-D case at
2 = 0. Comparing figures 1 and 7(a) we see significant dif-
ferences. However, for z > 45, the maxima of the passive
scalar lie very close to the extrema in vorticity, but with
no consistent relative offset. For the 3-D case, a compar-
ison of figures 2(a) and 7(b) shows larger differences. In
particular, the upper and lower sides are less similar in the
passive scalar than in the vorticity. Also, while there is a
local maxima in the passive scalar near each roller, there
are also concentrations of scalar in nearly irrotational areas
as well. This may be an indication of history effects; the
passive scalar may concentrate in regions of high vorticity,
and then be left behind as the vorticity moves elsewhere
through vortex-stretching effects.

5. SUMMARY

The calculations presented here show that in the very
early stages of the development of a wake, the flow on
each side is very similar to a mixing layer. Ribs form be-
tween rollers of like sign and are amplified. These ribs in-
duce opposite-sign streamwise vorticity in the rollers which
combine with the ribs to form quadrapoles of w;. The re-
sulting strain region at the center of the quadrapoles ei-
ther suppresses or amplifies (depending on z) the spanwise
vorticity in the rollers. Farther downstream, mixing layer
characteristics are replaced with wake characteristics. The
ribs now connect rollers of opposite sign and start to de-

3.24

cay. The distortion of the rollers produces new regions of
streamwise vorticity which form quadrapoles different from
before. Thus certain regions of w3 that were suppressed be-
fore are now amplified, and vice-versa. If this continues,
this will lead to “blinking” of the rollers, although we em-
phasize that the computational box was only long enough
to observe one cycle.

In two dimensions, it appears that a Gaussian profile
for a passive scalar at the inflow produces a scalar field
that correlates well with the vorticity. However, in 3-D the
vortex stretching terms of the momentum equations distort
the vorticity field so that while there are still extrema of
w3 near the passive scalar maxima, the correlation is not
as good as in 2-D.
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