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ABSTRACT which may be expressed in its one- and
Formal asymptotic expansions are used to two-particle constituent forms using (5) and the
describe the behaviour of Lagrangian turbulence equivalent equation for the acceleration
statistics in the inertial sub-range. This covariance:
approach 1is necessary in order to correctly R"m) =2I!* - 2R* n
develop the statistical theory of turbulent id i 2if *
dispersion. Contrary to conventional ideas, the At this level of descripti
; . . 4 ption, the task of
analysis indicates that the relative dispersion of describing relative dispersion reduces to the

two particles is not simply related to conditioned
dispersion of one-particle (say by fixing its
initial velocity). The actual structure of
relative dispersion is developed.

STATISTICAL THEORY

For a general theory of turbulent small-scale
processes it is appropriate to consider the
velocity and displacement difference variables:

alt) = ult) - ult)) (1)

and

e(t) = x(t) - (t—tu)g(tu) = E(tu) (2)
respectively. Batchelor (1950) indicates how to
analyze dispersion in terms of difference
variables. Next we assume that the small-scale
structure of the turbulence is isotropic,

homogeneous and stationary. Then the mean values
of the variables (1) and (2) vanish and the first
significant statistical information is held by the
covariances. We write
(1 (1)

uy (t 1lu ” (3)

*
(tz)> = nbj(tt'tz}

for the velocity-difference covariance where the

one in parenthesis indicates the Lagrangian
variable for particle one. Similarly, the
two-particle velocity-difference covariance is
written

€8} (2) *
e )T e )y = D (et ) ()
and from these the relative-velocity covariance,

. . .
for the variable g( = 2(2)- g(“, is determined

as

* () x *
D.." =2D, .- 2D
2 i (5)
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Note that while (3) is independent of the fixed

initial particle location, (4) and thus (5)

depends upon the initial fixed separation of the
pair of particles.

The difference variables are simply related

to the particle accelerations (Monin & Yaglom,

1975). In terms of the relative-acceleration
covariance, R*M'), we have
t tz
* (1) * (1)
D¢ ,‘[‘[ R, ;" (x, v )dr T, (6)
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analysis of the one- and two-particle acceleration
covariance. Monin & Yaglom (1975) estimate these
in terms of the mean energy dissipation in the
flow, €, the fluid viscosity, v, and the initial

pair separation gu. Their crude estimate gives the
* *
initial ratio of Rzi'mu. as proportional to

172 2/3
D [E] {=r)

L(EL)‘IE A
where A = |4 | and L is some outer length scale
for the turbulence. With the outer velocity

fluctuation, o2, being given by (£L)2’> a Reynolds
number may be defined from the outer scales:

% = v (e 3.

(L/ﬂ'z,aa-ilz.

Then r 1is proportional to

Now the most important practical
case to consider is vwhen & » 1. Also the
small-scale spatial structure of interest
corresponds to cases when A « L. However, it is
not meaningful to qpnsider initial separations
which depend upon ®. Thus in the limit R » « the
ratio r tends to zero. The smallness of r suggests
neglecting the two-particle acceleration
covariance relative to the one-particle one. Honin
& Yaglom (1975) do indeed do this and it is then
evident from (6) and (7) that the relative
dispersion is effectively equivalent to the
one-particle dispersion. The flaw in the argument,
however, is that although r is small it is only so
for a fraction of the two-time integration domain
in (6). To more precisely account for the relative
dispersion process we need to more carefully
examine the structure of the one- and two-particle
covariances.

ONE-PARTICLE DISPERSION

For the special case we are considering the
one-particle acceleration covariance depends on a
single scalar function of the two-time time
difference,

* *
.. = o 8
RW “""644 (8)

where T = lta- til and 84.4. is the Kronecker delta.

The initial covariance may be estimated, as above,
by dimensional arguments; thus we write
1/2
- -1 (T 2
etn R[En] where tﬂ = {E] 4

R (v) = (9)



Here we have introduced the Kolmogorov time scale,
tﬂ' which is a time scale supposed typical of the

actual dissipation processes. The dispersion
possesgses a second time scale, tL. which is

typical of the outer flow and is approximately
L/o. Thus tL = 3”ztn and so the outer time scale
is much larger than the inner or dissipation time
scale. Because of the two-scale nature (9) is an
inadequate representation _and it is instead
appropriate to interpret R in terms of matched
asymptotic expansions. Thus for T ® tn the inner

&
expansion of R consists of a sequence of terms of
decreasing order of magnitude:

* - .1 T T
R o= ety [EB[FHJ + 61(1)91[En] e ] (10)

where the first term is independent of the outer
scales  but the remaining terms represent
corrections due to the outer flow and are hence R
dependent. Of course 81 « 1. Similarly, an outer

expansion may be written down to describe to
covariance for T w t, (large lags) say

L = <15 (T = s [T
R = Etl [go['i'] * ﬁi(a)gl[E] L S ] (11)
L L
where in this case the first term is independent
of the small scales but the higher-order terms
represent corrections due to them. These
expansions are required to match when tn « T « tL,

i.e. the inner expansion as t/tn + @ matches with
the outer expansion as t/tL + 0 in the sense of

van Dyke (1975). A detailed examination of this
proposed behaviour is given by Borgas & Sawford
(1989). Here we will restrict attention to the
leading-order terms.

Supposing that, firstly, some algebraic power
law holds in the matching ragion and, secondly,
the first terms in (10) and (11) match at leading
order we have that

% = =1

] | T
etq gu[Fn] ~ etL Eﬂ[EL] when tﬂ «T K tL

Y ¥
- -1t = <1fx
Etn (E,J L EtL [E]
L
1

is only possible for y = -1. Thus SD(E) = BE  as
£ + @ and R. ~ B/t for trl « T« tt (8 is some 0(1)

and

constant). Clearly the process is equivalent to
Kolmogorov's hypothesis at this order. However, we
will now show that this particular prediction is
kinematically inconsistent.

A useful covariance is the two-time velocity

covariance with t,=t, =1, i.e. ﬁﬁ(t) = D.(I,T).
Then
*® 1 dz “ %
R = 3 —-ZD
dt
or equivalently
“% T *
p (1) = 2l [r = t]R (t)dt . (12)
Since D. + 20% as T + @ it follows that
d * U X 2
‘[R (t)dt = 0 and l ®(f)dT = - 0 (13)

are two kinematic constraints which must
independently be consistent with the expansions
used. In order to assess this possibility a

uniformly valid approximation to R. over the
whole-time lag domain is needed. When given the
inverse-lag matching above the composite expansion
method (van Dyke, 1975) gives

* = =1 T = -1Z [¥ -1
R =~ ctn §°E%J + stL gu[EL] -6t . (14)

Using (14) in the first integral in (13) gives
@ ;
‘[ R (t)dr = BElog[%L] +0(E) » €
n

where Bu is assumed to vanish exponentially fast

when t/tL + ®. Therefore according to (13) & must

vanish. What this means is that the expansions are
not uniform. BO decreases faster that inversely

and so for large lags is not a very large fraction
of the covariance. Higher-order terms, such as
6131 have overtaken it. Similarly, Bu does not

grow inversely with small lags and higher-order
terms dominate it in the inner region. However,
because EO(E) is integrable over [0,®) the

velocity covariance from (12) behaves like
“ %
D (T) = Gnt when tn €T« tL
where 80 is an 0(1) universal comnstant given by
(s
g, = z‘[eo(glds . (15)

Thus the velocity covariance has a well defined
inertial sub-range but where the wuniversal
constant is associated with the dissipation-range
acceleration covariance and not an inertial
sub-range acceleration property. The latter is
trivial in the sense that it is always a function
of both tland ® such that it remains much smaller
than €t . Note that a matched asymptotic

expansion representation of Dt is not non-uniform
in the manner of the acceleration covariance and
the leading-order composite approximation is a
good representation of it.

The outer expansion for D has the same form
as (11) except that it is proportional to et and

the functions are denoted by say ﬂ"s. A good
representation of 1% according to Hinze (1975) and
Deardorff & Peskin (1970) is

T} . 1 GlEl
gD[EL] = 2{1 exp[ 3 Botl]} (16)

The literal accuracy of (16) is not important ?qt
it shows that there are significant O(EtLl

acceleration covariances (by differentiating twice
and remembering (12)) and it gives the correct
inertial sub-range behaviour as T -+ 0. Note that
the linear wvariation with T of the velocity
covariance in the inertial sub-range when
differentiated twice gives a null result, again
suggesting the rather special nature of
acceleration inertial sub-range.
The limit as v + 0 is very illustrative. Then
for t 20
* = -1s(T | e D ) o
R (T) = Bet, 5[? ] + et 50[? ] (17)
L L
where S8(E) is a generalised & function (Lighthill,
1958). This result is arrived at because 30 is

integrable. (17) is the required form of
acceleration covariance when turbulent dispersion
is modelled using a Langevin equation (Novikov,
1963).

Figure 1 shows schematically the acceleration
covariance and various approximations in the inner
and outer regions. Matching is illustrated by the
fact that

limit = -1 limit = -1,
tltn4 mEtn éagi a Tt S 0%ty 2

and the non-uniformity by the fact that Etatgu

clearly underpredicts the covariance for T » tn.
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Figure 1. Asymptotic structure of the one-particle
acceleration covariance.

Finally, the analysis extends easily to
particle displacement statistics and there are no
other important ramifications of the kinematic
constraints.

TWO-PARTICLE DISPERSION

#*
The cross-acceleration covariance, say Rzij'
is the relevant generator of, say, the
cross—-velocity covariance. However, these
quantities depend on initial separation which

implies two things: firstly, that the acceleration
process is not stationary (the particles are less
well correlated after being dispersed than
initially) and secondly there is a directional
bias imposed by the vector Ao' The latter problem

is overcome by considering scalar products of
acceleration, velocity, displacement et cetera.
Then all two-time covariances are functions of l:,l

and t the tn. tL

tu = (AZIE) to reflects the time-scale for the

rate of decorrelation of

Provided that A is much greater than the
14 p-374

Kolmogorov length scale, n = (ualE) L,
the influence upon the cross-covariances of the
parameter t_ is trivial. Now the time-scale tD

plays the role of the inner scale, while the outer
scale is sgtill tL‘ Honin & Yaglom (1975) , argue

well as
1/3

as parameters and

the cross-statistics.

* S

that the magnitude of elements of Rzi{ is O(EED').
x

Thus we can write an inner expansion for R

t
3o[f

where higher-order corrections (including
R-dependent terms) are not explicitly considered.
Figure 2 shows a schematic of the behaviour
represented by (18). An analogous outer expansion
could also be written down. However, for the
gimple goal of showing the importance of the
two-particle cross covariance it is sufficient to
solely consider the matching region. Note that the
standard inertial sub-range has two disjoint
domains for two-particle statistics. There is the
behaviour  for "small" ‘times, t1,t2« tyr and

times, tu« t1'tz« tL. The

intermediate sub-range is our present concern as
this represents potentially universal small-scale

244

-, =1
et
0

1.%2,%L] + o(Et;H
0 ‘o0 ‘o

(18)

"intermediate"
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behaviour independent of the initiallccnditi?ns.
The matching behaviour in the intermediate

*
sub-range requires Rzii to have the form

* ("
RZLL ™ Et) 3[¥;] when t « t ,t «t (19)
where ®B(E) ,is a smooth function such that

B(E) = EB(E™"), the latter for symmetry in the

time variables t1 and tz. Similarly the mean
velocity cross-product, from (4), has a matching
form
i G L2 20
; nzLL L] Et1mz[t;] when tu« t‘,tz« tL (20)
is a smooth function such that

where ﬂz(E)
2,(6) = £7'9,(E71).

The relationship between the velocity and
acceleration (scalar-product) covariance is

2
atlatz
and substitution of (19) and (20) into (21) gives
2
e = - [zgagf " gﬂgEz]ﬂz(g) ) (22)
Now in the one-particle case the equivalent

substitution of naive matching forms resulted in
an inconsistency (the linear term in T vanished
upon twice differentiating). However, there is no
such problem evident for two-particle statistics.
This is reinforced when (22) is solved for 52,

assuming that 3 is given. Then

-1_=1

X (23)

g -2
mz(E) = - l [x - E ]m(x)dx
with the relevant details given by Borgas &
Sawford (1989). For 92 to be well defined by (23)

requires that B(E) =~ El'x for £+ 0, where A > 0
is some constant. This result is equivalent to

8 «fr"! as T+ o and is the analogue of the

exclusion of inverse lags from the one-particle
acceleration covariance matching structure.
However, it is evident from (23) that there is
more structure in the intermediate sub-range other
than for small £ and 52 is generally a significant

two-particle

Figure 2. Schematic

the
acceleration covariance. s



‘non-trivial representation of the velocity
covariance in the intermediate sub-range.
Moreover, in the context of matched expansions,
the leading-order matching behaviour is well
defined -and the expansions for acceleration
covariance are uniform (in the sense as above).

In a similar way we may calculate the
cross-displacement covariance and the results are
summarised below for the particular case of t‘= t,

thus describing mean-square difference quantities.
For velocities

(1) (2)

(t)u (t)y =~ Zﬂoet ' to «t« tL (24)

while for displacements

@ (e () w [51— iy ]ct bt €t (25)

where B = [2£”'B(E)AE and ”1 = IMB(E)AE are both
0(1) universal constants. Note that the equivalent
one-particle results are JBOEt and l."uEt:l for

velocity and displacement respectively, but where
the universal constant BD is related to the inner

dissipation region (through (15)) and is not an
acceleration inertial-range property as are 30 and

”1' Nevertheless, despite the different

interpretations of the universal constants and the
vastly different scales of the two acceleration
processes the estimates of the intermediate
sub-range dispersion are of equal
order-of-magnitude in both cases. Therefore, the
two-particle contribution must be considered in
any account of relative dispersion.

RELATIVE DISPERSION

From (6) and (7) it is evident that the one-
and two-particle dispersion effects are simply
additive for the relative-dispersion covariance.
Here again we only consider inertial sub-range
behaviour. From the previous sections it follows
that

66 _Et , b «t«t
w1 % ~{ e n ° (26)
(68 - 43 )zt, b, €t €t
and
= 3
26 et”,
@ .,{ L % (2m)

A |
Z(EU E°+ 351)5t F to «t« tL

t_«t«t
n

where in the inner range, tﬂ« t « t0 two-particle

effects can be shown to be truly negligible.
The analysis of HMonin & Yaglom (1975) proposes
that the initial small-time sub-range extends over
the entire inertial range, which is equivalent to

the constants ﬁo and 91 both vanishing, i.e.

ignoring the two-particle acceleration covariance.

However, we believe that this assumption is
unwarranted and is not supported by any evidence
that we know of. Unfortunately, the simple
analysis followed here cannot determine the
numerical value of the universal constants (and
therefore show that they do not vanish); only some
calculation based on the Navier-Stokes equations
could accomplish that.

CONCLUSION

We have shown the importance of two-particle
effects in relative dispersion. The conditioned
one-particle statistics can no longer be thought
to adequately represent two-particle statistics,
at least in the intermediate part of the imertial
sub-range. Thomson (1989) inferred as much from
his Langevin-equation modelling of two- particle
dispersion and also predicted this as an actual
physical property of turbulent dispersion. Our
more elaborate analysis supports Thomson's view
and lends overall support to the Langevin-equation
technique. An important inference of this work is
that, since the two-particle acceleration
covariance is important for dispersion, the
Langevin models should in future adequately model
them.
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