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ABSTRACT

This study concerns the onset of thermal conveclion
in a viscous fluid subject to flow in a rectangular duct. The
onsel of thermal convection is analyzed by means of a linear
stabilily analysis in which the flow field perturbalions are
expanded in sels ol complete orthonormal functions satisfy-
ing the boundary conditions of the flow field. It was found
Lhat if the width and depth of the duct are of the same
order of magnilude, then the side walls delay the onsel of
thermal conveetion in planes perpendicular Lo the unper
turbed flow velocity vector. Their presence may canse the
vertical plane of the unperturbed flow velocily veetor (o
be the mosl susceplible to the development of perturba-
tions in the flow ficld. In such a case the onsel of thermal
conveclion is represented by overstability. Tinite rolls inay
develop in planes parallel or perpendicnlar o the unper.
turbed velocily vector according lo the values assumed by
the Reynolds number of the unperiurbed flow and the ratio
belween the width and depth of the ducl cross seclion.

INTRODUCTION

This study stems from an interesl in simulatling Che
performance of various devices as heal exchangers, mechan-
ical tools, and others, whose flow ficld is represented as a
viscous fluid subject to llow in a rectangular ducl, heated
from below.

The conventional Rayleigh Jelreys problem [Nicld,
1967; Veronis, 1968] is schemalized hy a heated infinite
horizontal fluid layer, for which the linear stability analysis
provides values of the critical wave number K bul does
not. identify the exact shape of the convection cells. In the
present. study the Rayleigh Jereys problem represents a
particular case of thermal convection in a ducl of infinite
width when there is no flow.

Several studies [Linden, 1974; Legros el. al., 1977; el
al.] investigated botlh theoretically and experimentally the
effect to thermal instability phenomena in an infinite Muid
layer subject lo shear flow. Such phenomena arce (ypical
Lo various occanographic and engincering problems, where
the infinite viscous layer assumplion is valid. The previons
studies mentioned above proved, by a lincar stability anal
ysis, Lhal all modes normal to the shear direction are sta
bilized by the shear, and consequentely the preferred maode
ol instabilily is thal of two_dimensional sheets aligned with
the shear direction.

However, varions mechanical devices often require the
consideration of the reference to the lateral conflining walls
of the duct which may significantly affect the Mow field and
delermine the shape of the convection rolls. Some previous
studies, [Davis, 1967; Magen et al., 1975; Fdwards, 1988]
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Fig. 1: Schematic description of the rectangular duet fflow

concerned the analysis of thermal convection in a rectan-
gular box or other Lypes of containers. They referred 1o a
fMuid body which is originally at rest. The present study
refers Lo the onset of thermal conveclion in a reclangular
duct flow whose schemalic description is given in Figure
1. A finite duct, where the depth and width are of the
same magnitude, is considered. We employ the Galerkin
method, in which the velocily perturbalions are expande
in a sct of complele orthonormal functions, satislying (he
boundary conditions of the flow field.

THE BASIC EQUATIONS

The basic equations nsed for the analysis of the flow
field instabilily phenomena are the equations of continuily,
molion, heat {ransfer, and the equation of slate, relating
temperature variations with density changes. The flow field
coordinales and variables are nondimensionalized as follows
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where z is the laleral horizonlal coordinale; y is the ver-
tical coordinale; z is the horizontal coordinate in the un
perturbed flow direction; & is the depth of the duel: n is
the velocily veclor; T'is Lhe Lemperalure; p is the density;
v is the kinemalic viscosily; I" is the pressure; g is the
gravilalional acceleralion; { is the time; po and 15 are den-
sily and lemperature of reference, respectively; py and p,
are the fluid densities ai the botlom and Lop of the duet,
respectively; Ay is the temperalore gradient.



We assume that the temperatures at the rigid botlom
and lop of the rectangular duct have constant valies Ty and
T;, respectively. The side walls of the ducl are rigid and
insulated. The duct boundaries determine the lemperature
and velocity distribution under steady staie unperturbed
conditions as follows

1 -
T(y) =To — Bry ; To = 5(’13+h)

u=W(zyk (2)

The velocity distribulion W (z,y) is schemalically shown in
Figure 1.

By applying the Boussinesq approximalion, inbroduc-
ing (1) and omitling the plus superseripts, the governing
equations are obtained as follows

Vou=10 (3)

S9£+u Vu=-Vr

a + RaTj+ Viu

(1)
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where i is a unit vector in the = direction; j is a unil vector
in the y direction; k is a unit vector in the z direction; ¥
and V2 represent the gradient vector and the Taplacian,
respectively; Ra is the thermal Rayleigh number; I'r is the
Prandtl number. These paramelers are defined as follows

Fr[a- 4 u-VT] =V

< G b‘ v
Ri = arfrgh” . Prariead (6)
KTV KT
where a is the width of the duct; e is Lhe volumetric

thermal expansion coeficient lincarly relating density with
temperature; &7 is the thermal difusivity.

Referring Lo rigid boundaries of the flow field we oh-
tain the following approximale expression for the velocity
ficld in a rectangular duct [Berker, 1963

(7)
where 7 = a/b is the ralio belween width and depth, re-
spectively; Re = AV Ry/v = 20)/(a + b)v is the Reynolds
number of the flow; V' is the average flow velocity; Ry is
the hydranlic radius of the duct; @ is the ducl discharge.

This equation is applicable provided thal the ratio belween
a and bis O(1).
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THE LINEAR STABILITY PROBLEM

According to the linear stability analysis (he flow field
in the duct is subject to small disturbances in the velocily
v, lemperature # and pressure p. T'he velocily perturbation
is represented as lollows

v = ui 4 vj + wk (®)
Tntroducing the Mow field disturbances inlo (3)  (5), ne
glecting second order lerms, and climinating by simple

mathematical operations p and w, we oblain

BB, Y, Sl B, ot
Gi\dz _8y) 8" \oz oy) T Pz 0z )
(3“ (')u_ (79 i d a2 :
(')1; 5, la amv TJ—%V 0
a 2, 9% du (92w a*
('}!V +'] (” 022 ) * o 0z ( dz? Ay? )
f?i,_(avﬁ@ LW 0 (o
Az 0z \dz Oy Ay dz\dx dy
A?W Ou

Rafl —
(‘}'r'r']?,r e =v? H Rsvy) + vty

{(10)

4.26

a6

a6 aT
TR [ e =3 11
}r[az+1iay]+Waz vl (11)
where
F 62 62
L SO - 4_ o2, o ;
Vi= Fy +('322 : Vi=V= ¥ (12)

Assuming thal the appearance of two dimensional rolls rep-
resents the onset of thermal and thermohaline conveclion
we follow Davis [1967] and consider that such rolls may de-
velop in the x—y or the y-z plane. Criteria of stability for
the x-y plane in the preseni study are eventually covered
by Davis’ study, as this plane is not aflfected by the un-
perturbed flow. Therefore we refer to the development of
convection cells in the y—z plane. Provided thal convection
rolls are developed in the y—z plane, the flow field pertur-
bations can be expressed by the following normal mode
expansion

[w,v,8 ] (ﬂf,?hzvt) =

i (13)
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where K, = K is the wave number in the z dircclion; o is a
complex quantily expressing amplification and oscillations
of the flow field perturbations; @(z,y), (=, %), f(z, ) are
complex quantities.

Introducing (13) into (10)-(12) and omitling the bar
sign from @, v, f we oblain

Lo(u) + Ly (v) = RaD,f
Po(u) 4+ Py (v) = RaV3i6
Iin(0) = —

where
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where the subscripts , and , refer to partial deriva-
tives with regard to = and y, respectively; 1), and ), are
aperators defined as D, = 8/0z and D, = 3/dy, respee-
tively

At the rigid boundaries of the rectangular duet, the
constanl. temperature distribution, the no-slip condition,
and the continuity imply, respectively

f=v="Du=0 at y==+0.5and z =057 (16)

We utilize the Galerkin method in order to oblain
approximale solutions of the system (14), subject to the
boundary conditions (16). Selulions are oblained by ex-
panding (=, y), u(z,y) and v(z,y) in sels of complete ar-
thonormal fnclions, satisfying the boundary conditions
(16). We assume thal such functions are represenled by
Fourier series as follows

w(@,8) = 3 Unt™ 20 (2)0n @)
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where U, Viny Ty G are complex coellicients; 1, (7)),

() are even orthonormal Minctions defined as lollow

Bin(r) = \f?-rns{'lm — 1)rr



cosh(An7) N cos( A7)
cosh(Am/2)  cos(An/2)

where A, are the positive roots of the equation

Cm(r) =

(18)

tanh(%)-ﬁ-tan(%) =0 (19)

r is a dummy variable.

Introducing (17) into (14), multiplying these equa-
tions by

Ca(z,y) = 77 /2Cn(2/7)Ca(y)

and by

En (w,y) = T“UzEﬂ(z/T)Eﬂ (y).

and integrating over the duct cross section area, we
obtain by simple mathematical operations the [following

madtricial expressions of order N, where N is a truncation
number

[a] - [U] + [b] - [V] = Ra[c] - [T]
(d] - [U] + [e] - [V] = Raf] - [T]
[g] - [T] = [u] - [V] (20)
Here [a], [b], [c], (d], [e], [f}, [¢] and [h] arc complex
matrices; [U], [V] and [T] are complex vectors.
By some madtricial operalions the set of equations (20)
is transformed to the following characteristic equalion of
the stability problem

[¢] - [T] = Ra[T] (21)

where

[o] = [f]"" - [e] - [(h] " - [g]

Equation (21) represents the characleristic equalion
of onset of thermal convection in the rectangular duct flow.

RESULTS AND DISCUSSION

The critical Rayleigh number is the parameler which
determines the onset of thermal convection in the flow ficld.
This parameter depends on the Reynolds number Re, the
Prandtl number Pr and the ratio between the widlh and
depth of the rectangular duct 7. For each sct of the inde-
pendent paramelers we calculate the eigenvalues of (21) for
various values of the wave number K. The minimum eigen-
value obtained in such a calculation is the critical Raylcigh
number which is associated with the crilical wave nminber.
The latter determines the size of the convection cells.

(22)

Verification of the applicability of our approach for
the determination of the flow field stability was oblained by
compairing our results referring Lo Re = 0 to those of Davis;
they concerned thermal convection in a box, provided (hal
one side of the box has an infinite extent. Our results were
usually in good agreement with those obtained by Davis’
approach.

Figure 2 refers to the onset of thermal convection in
the y-z plane when the fluid is originally subject o flow at
Re =10. All curves representing the dependence helween
Ra and K are associated with w # 0, namely overstable
motions exist in the flow field which is subject Lo thermal
convection. Such motions are probably attributed to mo-
mentum difference between the different fluid layers. The
unperturbed flow velocity increases the valne of the crilical
Rayleigh number and decreases the critical wave number,
The phenomenon of horizontal section of the curve Ra ver-
sus K in the region 0 < K < K. occurs al 7 < 1.

Figure 3 concerns the effect of an increase in the
Reynolds number on the thermal convection in the » »
plane. This Figure indicales that such an increase leads
to an increase of the critical Rayleigh number and a de-
crease of the crilical wave number.
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Fig. 2: The Rayleigh number versus the wave number for
various values of 7 [Re =10, Pr = 10]

We also introduce into Figure 3 the value of the crit-
ical Rayleigh number in the x—y plane referring to the de-
velopment of two convection cells in this plane. Comparing
critical values of Rayleigh number in the y-z plane and and
x-y plane, we can conclude that for 7 = 2 and Re > 15
thermal covection takes place in the x—y plane.

Figure 4 provides some more information concerning
the shift of thermal convection [rom the y-z plane o the x
¥ plane. This Figure indicates that for originally stagnani
fluid, thermal convection always develops in the y-z plane.
For large values of T and sufficiently large Reynolds number
the unperturbed flow causes the x—y plane to be the most
susceptible to the development of thermal convection.
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Fig. 3: The Rayleigh number versus the wave number for
vartous values of Re [Pr =10, 7=2]

The larger is the value of 7 the smaller is the value
of Reynolds number needed for shifting thermal convection
from the y-—z plane to the x—y plane. However at values
of 7 smaller than unity the shifting effect of the Reynolds
number vanishes. The increase of Reynolds number de-
creases the value of the critical wave number, and above
a certain value of the Reynolds number Lhe crilical wave
number evenfually vanishes. As shown in Figure 4, the
phenomenon of thermal convection in the y-z plane with
vanishing values of the wave number may take place pro-
vided that 7 is smaller than 1.5.

The results represented in the preceding paragraphs
imply thal the unperturbed flow velocily slabilizes Lhe llow



field, and delays the onset of thermal convection in the y-z
plane. That flow velocity may cause the convection cells to
develop in the x-y plane instead of the y-z plane.
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Fig. 4: The critical Rayleigh number versus 7 for various
values of Re [Pr =10]

The larger is the value of 7 the smaller is the value
of Re needed to cause the shift from thermal convection
in the y-z plane to thermal convection in the x-y planec.
Il Re # 0 then convection motions developed in the y-z
plane are always associaled with overstable motions. Such
molions are generated by the difference between the mo-
mentum typical to different levels at the fluid body. Tn such
a case an increase of Prandtl number means faster dissipa-
tion of the momentum perturbation, and stabilization of

the flow field.

SUMMARY AND CONCLUSIONS

The onset of thermal convection in a rectangular duct
flow was investigaled by a linear stability analysis. The
analysis led to a system of differential equations which de-
fine the point of instability as an eigenvalue problem. In the
rectangular duct flow the side walls may suppress the onsel
of thermal convection according lo the mode deseribed in
the preceding section, and determine the vertical plane par-
allel to the unperturbed velocily vector Lo be most suscep-
tible to onset of thermal convection. Some of Lhe fealures
typical to the phenomenon of onset of thermal convection
in a ducl flow were determined by calculations of slabilily
referring to that plane. Such calculations indicated thal
an increase of Reynolds number stabilizes the flow in the
narrow duct. Overstabilily always characterizes Lhe poinl
of instabilily. Overstable molions are atiribuled to the dil-
ferences in momentum between different fluid layers.
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