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Synopsis — The influence of channel irregularities on rating curves, esti-
mation of resistance coefficients, and the propagation of flood waves
suggests that a detailed study of such irregularities would be worth while;
in this paper an initial attack is made on the problem by analysing steady
flow in channels having irregularities of idealized periodic form. Two
cases are treated: channels having sinusoidal variations in (a) bed level;
(b)width. The former approximates to the pool- and-riffle formation charac-
teristic of matural rivers. The flow may be termed “quasi-uniform” in
the sense that it is not governed by any controls other than those imposed
by the bed roughness and slope, i.e. there are no backwater or drawdown
curves as those terms are usually understood.

The equation describing the flow is non-linear and non-elementary,
but may be linearized and solved by assuming that the variation in
width or bed level is small. For large variations, solutions were obtained
by numerical methods with the help of a high-speed computer.

An interesting feature of the solutions is the existence of a phase
difference between the surface wave form and the channel bed or width
wave form. This phase difference is dependent on the discharge; the
discharge-depth relation at a given section may therefore differ materially
from the uniform-flow relation from which rating curves are normally
synthesized.

Other questions resolved are that of the difference between water
surface slope and energy slope (which may be considerable) and the cri-
terion determining when, on a mild slope, the irregularities are no longer
“drowned” but give rise to a series of critical-flow sections. Because of
the phase difference, critical flow does not occur at the section of greatest
constriction, but within a quarter-cycle of it.
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c Chezy resistance coefficient

r Froude number, 2/|/(gy)

F Froude number in “mean” channel = C(8o/g)
g Acceleration of gravity

H Total energy of flow, y+z+0%/2g

k 2my(1 — F2) [S,L, Case 1

L Wavelength of channel variation

Q Total discharge

q| Discharge per unit width, @/b _
R Hydraulic mean radius of cross-section
So Bed slope

Sw Water surface slope = —d(y+2)/dx

8, Friction slope = ¢*[C*R ‘

v Mean velocity at a section

@ Distance along the channel

y Depth of water

Yo Uniform depth in uniform channel
z Height of bed above datum o
24 Half amplitude of bed level variation
oty Phase angle, bed wave—depth wave, Casge I
ot Phase angle, width wave-depth wave, Case IT
i} Phase angle, bed wave-surface wave, Case I
L& 272, [SoL ‘
& Ratio (half amplitude of depth wave) [y,, Case 1
€ b1 /Do

& Ratio (half amplitude of depth wave)y®/, Case 1T
0, onx[L—ay
0, 2mx [L—aoy

1. INTRODUCTION

Irregularities in natural river channels often. introduce. dou]E)ts
about the proper use of uniform flow formulae in connefztmn. with
such problems as the synthesis of rating curves, tl.le es.tlmatlon .of
flood discharge from high water marks, and the estimation of resis-
tance coefficients such as the Manning 7 from measurements of
discharge and slope, which is usually taken as the water surface
810%)\?}'1611 the irregularities take the form of variations in width,

jor i i i aves, since,
they are a major influence 1n the subsidence of flood waves,

¥ {
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they provide storage which makes the river equivalent to a chain
of small lakes. Theoretical approaches have in fact been devised:
in which the equations of unsteady flow are rewritten as diffusion
equations with a diffusion coefficient which depends on channel
irregularities. However, this coefficient has not yet been quantitat-
ively related to the geometry of the irregularities.

These applications suggest that a general contribution to the
problems involved could be made by analysing steady flow in a
channel having irregularities of some idealized, e.g. sinusoidal,
form. The results will have immediate application to some steady
flow situations occurring in practice, and will also form a prelimi-
nary study for a more general attack on the flood routing problem.

Two such cases will be dealt with: first, a channel having constant
width and sinusoidal variations in bed level superimposed on a
constant slope; and second, a channel of constant bed slope and
ginusoidally varying width. The former approximates to the pool-
and-riffle formation so characteristic of natural rivers, the latter
to the irregularities which provide channel storage for floods.
The flow considered is steady and “quasi-uniform” in the sense
that it will not be governed by any controls upstream or down-
stream, but only by the bed roughness and slope. The variations
in section are assumed to be gradual, i.e. form losses are negligilbe.

2. ANALYSIS
(a) Case I. Sinusoidal Slope Variation

We consider steady flow in a channel of very wide rectangular
section, so that the hydraulic mean radius F is equal to the depth y,
and of constant width. The longitudinal section is shown, and
symbols are defined, in Fig. 1; the profile of the bed has the equation

2nx

2 = —Sgr+2,sin T (1)
We use the Chezy resistance equation
v = OY(BS,) (2)
where 8 is the energy slope, equal to
_6H _ v vdv dy s (3)
de ~ C% gdzx dr dx
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Now from (1)
dz 2m2 2mx
o il Sr T
and from the continuity equation
LR A
- Y

we have

Fig. 1. Definition sketch—Case 1.

where F is the Froude number, o[V (gy). Substituting these results
into (8), and writing ¢= vy, We obtain
2 2
(T,%—yﬁ% 008 Ezi " So)dm+(1 _9%3'_) y=0 (4
an equation which is not linear and not soluble by elementary
methods. However, an approximate solution can be found if we
assume that the undulations in the bed are of small amplitude;
in particular that the parameter
o 272,
8,L
is small. The effect is to linearize Eq. (4). Since the flow is not
modified by any upstream or downstream controls, i.e. may be
described by the term “quagi-uniform” already introduced, there
will be a cyclic variation in depth, of wavelength L, corresponding
to the cyclic variation in bed level. Since the amplitude of thi%('
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oscillation will be small we can assume with sufficient accuracy
that it will be sinusoidal, i.e. that

9 = s {1-|—£2 sin(z’g”-al)} (5)

Wh.ere Y, is the uniform depth that would occur if the channel were
uniform, ie. g2 = 028yy3. Squares and products of & and & will
be neglected. We set 0, =(2m2 /L —c,). Now

q2 3
‘C*E?}“s— = (%) So= 80(1—382 sin 61)

and

qz B CZSO(

Yo\’ .
W— g —(3]) = F%(I—SBZ sin 91)

Y
where Fo=0C|/(8,/g) = the Froude number that would occur if
there were uniform flow in a uniform channel. It will be agsumed
that C is constant, as this is consistent with the approximations
already adopted; F, will therefore depend on channel properties
alone, and not on the discharge.

Making the appropriate substitutions in (4), we obtain

dy - 8,{3e, sin 6, —&; cos (0, +x1)}

dx 1— F2(1— 3¢, sin 0,)
But from (5), we have
dy  2me
= ———Ifyﬂ cos 6

whence, neglecting the term in e,

2y F5—1)

g 008 (01+0;) = L
0

&, cos 0+ 3g, sin 6; (6)
Comparing coefficients of cos 6; and sin 6, in this identity, we
obtain

2 __
PV .. ]

8,L
g sina; = —33'2
whence
38,L 3
t’ —_ —_————-0 R, "
ST e “’
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and
&y —1
i R g oo N 8
a  V(#+9) ®
where

5= 21— F§)
= S.L

This parameter, k, may be used in two different ways as an
indicator of the state of the flow. If the channel shape, slope, and

Rl el
_y_ 0 2o A 0 o .
2 7 8 N
59 /
2 Jo / a €2 Yo \
B /6 gY—————C
OA Bed-wave
OB Depth-wave
OC Surface-wave
' i) *_Z:h—_,—gA
‘ eE —"i I'*“‘ﬁé':; —

Fic. 2. The compounding of bed-wave and depth wave in Case L

roughness are all fixed and the discharge is allowed to vary, then
% increases with the discharge. Or if the shape, discharge and depth
are all fixed and the mean slope §, and the roughness allowed to
vary, then k becomes an inverse measure of the effects of resistance,
becoming infinite when these effects vanish.

When F,<1 (subcritical flow), o is in the first quadrant, and
when F,>1 (supercritical flow), @, is in the second quadrant.
A further phase difference of = is implied in the fact that /e
is negative, so the “depth-wave” leads the “bed-wave” by a total
phase angle of (w+e;). The wave traced by the water surface can
be determined by compounding the bed-wave and depth-wave as
vectors, as shown in Fig. 2. The ratio between the half amplitudes

OB =|eyy,| and 0 A =2, 18 equal to

l&%ol _ _ £a 270
20 g, 8oL
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_ +1
(1—F3)V(1+9/%2)

_ 00s oy
T 1-F? (9)

so that when resistance effects become very large, and £ — 0 so
that o;—-m[2, the amplitude |eyy,| tends to zero, f tends to zero
and surface wave and bed wave are in phase: this is true for boﬂ;
suberitical and supercritical flow. When resistance becomes small
then for Fy<1: ’

k~+ e, >0, fom (10)
while for Fy=1:
k- — oo, oy 7T, ﬁ"“O (11)

confirming the well-known results® that in flow of a perfect
fluid over a sinusoidal bed, the surface wave and bed wave are
180 degrees out of phase for Fy<1, and exactly in phase for Fy>1.
In the latter case, we see that §—~0 both when resistance effects
are very small and when they are very large: there is therefore a
maximum value of f at some intermediate point. From (9) and
from Fig. 2, it is readily shown that

COS oy 8in oy

tan g =
4 1— Fi—cos® o

(12)

and that when Fy>=1, tan § has a maximum value of
St A
2F, | (F3-1)

when tana; = — Fof//(F3—1). Even when F, exceeds 1 by only
a small amount, this maximum value of § is quite close to m.

; We can usefully think of the situation as one in which an oscillation
in the bed level is forcing an oscillation in the depth; the effect
of resistance is to reduce the amplitude of the induced oscillation,
as shown by (9), and to introduce a phase shift, as shown by (7).
Both these effects are well-known features of forced oscillations.
Ho.wever, this analogy does not extend to the resonance condition
which in the present case is determined by a property of mean flov:f
(Fy=1), not by the matching of applied and natural frequencies.
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(b) Case II. Sinusoidal Wadth V ariation

We now consider steady flow in a channel of uniform slope Sy,
and width b given by the equation
b = by+by sin?z—x (13)
As before, it is assumed that the Chezy equation is true and the
channel is wide and rectangular in section, 80 that B = y. The
continuity equation this time takes the form
d_”_;.f‘?ﬂ_l_@ = i (14)
vy b
whence
vdo  vidy v 27b; " 2nw
T gdx  gydez gb L L
Substituting these results into (3) we obtain

o o gaby 2w o \g (1 P\gy—0 (15
o At e Gl

corresponding to (4). We set &,=b, [b,, and assume as before that
the depth y varies sinusoidally, i.e. that

Y = Yo {1-}—34 sin(——zzzE —az)} (16)

where ), is the uniform depth for constant width by, i.e. @2 =C25y5Ss,
where @ is the total discharge. If we set 6, = 2nx[L —oy, then

2 2 3
C?;y = E’E%F = _G%Zy—s{l — 9, sin (0, + &p) — 384 SID 05}
070

= 8o{1—2ey sin (0, +xz)— 34 sin 0,}

neglecting squares and products of e and &. Similar express'%ons
can be obtained for v?/gh and v*[gy; When these are substituted into

(15) we obtain, sebting F2=C%8,[g as before,

dy F¥2nye|L) cos (0 + a25) + Sof 225 sin (04 xp) + 384 8in 05}

dz 1-F3

27y o
L

g, cos O,
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from (16). Setting ¢ = 2my,[8,L, we obtain
es{F2 a cos (6, +ay) +2sin (0 + o)} = 4{(1 — F2) a cos O, — 3 sin G,} (17)

Comparing coefficients of cos 0, and sin 0, leads finally to the results

_ a2+ FY)
fan oy = a1 F2)—6 (%)
&y _ (Fia®+4) sin o,
R CEw ) (1

The parameter a has the same general significance as k in Case I;
when the effects of resistance become small, or the discharge becomes
very great, a tends to infinity, and tan a, tends to zero (positive
or negative, i.e. o, tends to 0 or @, according as Fj is less or greater
than unity). This argument verifies well-known results for zero
resistance, just as in Case I. Similar deductions may be made about
the variation of e, with resistance: when F2<1, then «, goes from 0
at zero resistance to m at high resistance; when F2=1, ay goes
from 7 at zero resistance to a minimum of tan-1{—a(2+ F2)[12},
and back to @ at high resistance.

The angle o, thus always lies in the first or second quadrant,
and &, /e, is therefore always positive, so that «, is the entire phase
difference by which the depth-wave leads the width-wave. In this
case there is no bed wave to be compounded with the depth-wave,
which therefore becomes the water surface wave.

(c) The Water Surface Slope

In Case I, this is equal to:

d(y +2) 2nx £ 27y
—— 8, {l—al cos ——+ 1-—1F% COS o1 cos( T —a1>}(20)
and in Case II, it is equal to:

dy e5(Fia®+4) sin oy
So—a— So {1_ F%—|—2 } (21)

In both cases the departure from S, is of the order of & or &;
a substantial departure from §, could no doubt be detected if the
theory could be expanded to cover larger values of & and ;.
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(d) Rating Curves

We recall that, as noted previously, % and a increase with discharge
in a channel of fixed shape, slope, and roughness. This means that
in Case I the phase angle 8, by which the surface wave lags lth? l.:)ed
wave, goes from 0 to @ as the discharge goes from zero to ‘1nf1mt.y.
The effect, as shown in Fig. 3, is that as the discharge increases
the water surface may rise more slowly (as at section I) or more
quickly (as at section II) than in a uniform channel, with a corres-

oL
%%yf———:—— ‘

T1c. 3. Change of phase lag f with inereasing stage, Fy<1, Case L

ponding difference in the form of any rating curves taken at ﬁh?se
sections. The situation can be stated algebraically by combining

Egs. (5) and (8):

¥ _1- 8 g 2_7“1_.¢> (22)
o V(k2+9)sm( L -

The resulting ‘equation indicates how, for a given x, the ra.tio
y Jy, varies with & and «;, i.e. with the discharge. The corresponding
equation for the width-variation case is:

1,2 9
gy- =1 +E_—i§£;]2a+z)4) sin o Si.n( fgx '—az) (23)
0 0

and in both cases the departure of y from g, is of the order of &
or &5 Again, if the theory is to predict substantial de]_partures of
y from g, i.e. substantial anomalies in the form of rating curves,
it must be able to deal with larger values of & and é&;.

p‘i\!‘\
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(e) “Drowning” of Irregqularities in Suberitical Flow

When F2<1, as it usually is in natural rivers, it does not follow,
either in Case I or Case II, that the flow will be subcritical throughout
the whole channel. It may be that #2is large enough, or the variations
in the cross-section strong enough, for critical flow to occur at one
point in every cycle, with supercritical flow downstream followed
by a hydraulic jump. In this case, one would expect the critical
section to be near the section of greatest constriction.

Considering Case I first, we see from Egq. (4) that if there is a
section where F2=1 (and dy[dz finite) then at this section

e 2 2
O%ya + ano cos Ez -8, =0,

ie,

2nx  S,—g?[C*® 1—1/F} (24)
L = 2m/L g

cos

since ¢2/C%y?=g[C*=8,[F%. For a solution of (24) to be possible
it is necessary that

& = |1-1/F}
i.e.
1 1—F2
F%E 1+31, or El“‘.T%O (25)

In the limiting case, where F2=1/(1+¢,), then 2nz/L==, and
the critical section is at I, Fig. 8, a quarter-cycle downstream from
the section of maximum constriction.

In Case II, we obtain from (15) the equation

¥ v 2a;by 2ma

W—i_g_bT_ cos T_SU =0

A 1 2wy & cos (2nz/L)
= 8oL 1+ & sin(27z[L)

cos (2ax/L) _ F3-1  (26)
{14 &5 sin (2mz[/L)}*ls — agyFPls -
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The expression on the left of this equation must therefore be
negative; it can be gshown to possess a minimum value, — M,

when
i o e 3 —1/(9 + 40¢5) (27)
L de,
then for (26) to be soluble, it is necessary that
1—F} 55
agg = —m ' ( )

In the limiting case when ag I3 =1— F3, then 2z [L will be
in the third quadrant, and the critical section will be somewhat
upstream from the section of maximum constriction.

The inequalities (25) and (28) given the conditions which must be
observed for critical flow to exist somewhere in the channel; other-
wise the irregularities will be «drowned’’ and the flow will be sub-
critical throughout. If critical sections exist, their positions are
given by (24) and (26); it is clear from these equations that as B3
increases the critical sections move upstream in Case I and
downstream in Case II until when F2=1 they are at the section
of maximum constriction.

The results of this section are true for all values of & and &
(subject to the limitation that &, cannot, physically, be greater
than unity). They are independent of the results obtained from the
approximate, or linear, theory applying to small values of & and &s.

3. NUMERICAL RESULTS AND APPLICATIONS

Solutions of (4) and (15) were obtained on a computer for a num-
ber of values of the parameters &, &, etc., in particular for the
larger values which are not covered by the linear theory.

Tor Case I, the equations could be rewritten in terms of three
dimensionless numbers—e;, ¥o[?0s and FZ The parameter

== 27 _ F2 _ Y _ F2
k= SUL (1 Fo) = Zs 51(1 FD)

is a particular combination of these three numbers which occurs only
in the linear theory, and has no significance outside of that theory.

For Case II, the appropriate dimensionless numbers are & @,
and F2, which have already been defined.
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Figure 4 shows typical Case I results—for & =1 and Fi=0-2.
The value of & may be thought of as fairly large, implying as it
does that the minimum value of the bed slope

dz 9
— = So(l—el sin ——Eﬁ)

is zero (when x=0). Larger values of ¢; imply the existence of adverse

20 o)
% |
\\ Complete solution
“ — ——— Linear solution =
™~
>
, NS /S,/So(mux.)
==z 150
e
W T Z f
s ——
=
< _ﬂ I —i20
‘U o
_ ]
=73 ),
—~30 @

8,75

—_——
i —

====5,/S (min) —|60

¢ g 0 15 20°
Yo/ Zo

Fic. 4. Results of complete &;Jd linear solutions for Case I, &, = 1,
=02

bed slopes at certain sections, i.e. of pronounced pool-and-riffle
formation.

However, the value taken for ¢ is large enough to be apparently
beyond the scope of the linear theory; it is interesting therefore to
note that the results of the complete theory (full lines) are not
a:lways greatly different from the results of the linear theory (broken
lines). Four parameters are plotted against y,/z—the maximum
and minimum values of the ratio
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Water surface slope, S8y = _d(y+=)

dx
Bed slope, 8,

—the phase lag p (Fig. 2), and the amplitude ratio |32y0| [Zo-

Figure 5 shows the variation of depth over one cycle for a typical
Case II result—e; =05, a=3, Fi=02. Three curves are plotted—
the complete theory, the linear theory, and the case where the resis-
tance slope 8, is assumed to be equal to S.

2:0 T T
|- Complete solution
e Linear solution
L e Kinematic solution, S,=$¢
1-5 / - \
s // "‘--.\ \
10— S
3?. = -,45 '/ e
> ey (SR
0-5
- Flow
= Width =Imux Melun M;ln
o] 0-25 0-50 075

¥l

Fic. 5. Longitudinal profiles for CaseIl, &, = 0'5, a = 3, F: = 02.

(a) Flood Routing

The case 8, =18 is included because of the relevance of the situation

to the flood routing problem: in the treatment of this problem it is

common to adopt the approximation S,= §, if the slope is steep
enough, and the corresponding flood wave has been termed a
“inematic” wave. The approximation is valid if the other slope
terms in the equations—of which dyfdx is typical—are small
compared with §,, and we may accordingly use the size of the ratio
(dy[dx)[S, as a criterion for the validity of the approximation.

Contributions to the term dy/dw are made by the flood wave
itself; however, we are concerned here with the contributions made
by channel irregularities. The curves of 8,/8, in Fig. 4 indicate
that dy/dx may be of considerable size in Case I; the same is true

of Case II, as may be shown by examining the linear solution for JJ
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the case shown in Fig. 5. The maximum value of dy/dw is equal to
2my,es [L, 80 that

(dy/dz) max

3, = 38,
In this case a=3, =031, so that
(dy|dz)

a value which seems large enough to invalidate the “kinematic”
approximation. However, it is interesting to note from Fig. 5 that
the kinematic curve is closer to that of the complete solution than
is the curve of the linear solution.

The question of real interest for the flood routing problem is
how the amount of water stored in a given reach varies with the
discharge, and it is in terms of that question that the differences
between the curves of Fig. 5 are significant. These differences have
implications of some interest in flood routing theory, but they are
beyond the scope of this paper.§

(b) Rating Curves; Water Surface and Energy Slopes

These questions can be discussed in the light of the results set out
in Table 1 for two Case II situations, showing the variation of depth
and slopes over a complete cycle. '

The first question to be considered is the effect on the rating curve
which is indicated in Fig. 8 for Case I. The figures in Table 1 indicate
that this effect is slight: at the section x=8L[12, where the effect
is most pronounced, the ratio y[y, drops only from 1-458 to 1-411
as a (proportional to y,) rises from 3 to 5. This means that
Ylyooy~ 0%, ie. that

Qocyg eyt (30)

The slope of the rating curve therefore differs very little from the
value it would have in a uniform channel; examination of the com-
puted results for Case I, and for other values of the parameters in
Case II, leads to the same conclusion.

The variation of the water surface slope, however, is a much more
pronounced effect. There are large variations along the channel
at the same discharge, and with varying discharge at the same section.
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Tasre 1. Resunts For Case IL (WinTH VARIATION);
& = 05, F3 = 0°2.

a=3 a=5

wiemtzy| vy | s | & | & | L | S | &) &
Yo So So Sw Yo So So Sw

Mean 0| 0-929 " 0-957
1-487 | 1-154 | 0-776 1-419 | 0-990 | 0-698

1| 0844 0-913
1-052 | 0-949 | 0-902 0-843 | 0-723 | 0-858

2 | 0-836 0-930
0-702 | 0-736 1-049 0-516 | 0-539 | 1-045

Max 3| 0-887 0-980 - ‘

0-473 | 0-577 1-220 0-339 | 0-446 | 1:316

4| 0-979 1-050
0-345 | 0-504 | 1:461 0-238 | 0-432 | 1-816

5| 1-094 1-129
0-286 | 0-521 | 1-822 0-164 | 0-499 | 3-043

Mean 6 | 1218 1-217
0-268 | 0-641 | 2-392 0:075 | 0-689 | 9-21

7| 1-346 : 1-314
0-359 | 0-882 | 2-457 0:070 | 0-945 |13-556

8 | 1-458 1-411
0-902 | 1-126 | 1-247 0-781 | 1-231 | 1:576

Min 9 | 1-475 1-434
1-923 | 1-309 | 0-681 2.409 | 1-408 | 0-585

10 | 1-314 1-287
2.9263 | 1-365 | 0-603 2.901 | 1-422 | 0-490

11 | 1-094 1-088
1-941 | 1-302 | 0-670 2.245 | 1-262 | 0'562

Mean | 12 | 0-929 0-957

The same is true of the energy slope S;=v*[C%y, and the slope ratio
8,/8,; the conclusion suggested is that the water surface slope 8§,
and bed slope S, would be very poor measures of the energy slope
for the purpose of, say, deducing a value of Manning’s n.

The example chosen is an extremely variable channel—in that
the maximum width is three times the minimum—and it may
be thought unlikely that any reach in such a channel would be
seriously considered as & gauging site. However there are in moun-
tainous rivers many examples of short straight gorges having much
wider sections upstream and downstream, and such gorges are

often chosen as gauging sites —because of easy access, for example. J

=2
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However, these gorges would have flow characteristics broadly
similar to the constricted section in Case II, and here, as Table 1
shows, §,, and 8, are widely at variance with §;and with each other.
In particular, Table 1 shows that as the flow increases the point
of minimum §,, moves downstream into the section of minimum
width: the consequent reduction in water surface slope with increas-

ing discharge can in fact be observed in narrow gorges of the type
mentioned above.
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