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Synopsis — A simple mathematical model of one-dimensional variable

area gas flow, which takes
account, is presented. It is

heat addition and irreversibility effects into
shown what influence entropy changes have

on flow properties and some light is cast on the effects of heating and
cooling on the location of the critical area in nozzles with non-adiabatic

walls.
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o= T(l + % M 2) Isentropic stagnation temperature

Vv Local velocity

x Digtance along nozzle axis
y=0,/C, Ratio of specific heats

0 Density

Indicates critical (M =1) conditions
Suffizes

t Conditions at throat

1 Conditions at datum point

1L INTRODUCTION

In order to establish a simple model of one-dimensional gas flow
in nozzles which will cast some light on the role played by entropy
changes, it is convenient to limit attention to a gas which obeys the
perfect gas laws and which has constant chemical state. It is further
assumed that heat is added to (or removed from) the gas by direct
transfer through the walls. Thus changes in the isentropic stagnation
temperature are considered to be due to external sources. :

Dissipation, due to both viscosity and the irreversibility of the
thermodynamic processes, is included in the analysis by introduc-
ing specific entropy as an independent variable. Naturally, adoption
of entropy as an independent variable gives rise to some difficulties:
for example it is not possible to investigate how entropy is produced.
However, by proceeding in this way it is possible to reach some
useful conclusions which supplement present knowledge obtained
from other models. Because both heat transfer and viscous dissipa-
tion give rise to finite entropy gradients it is usual to find, in these
other models, that entropy is considered as a dependent variable.
Thus in the well known Shapiro-Hawthorne model®), the entropy
gradient for variable area flow with heat transfer and wall friction
is found to be,

as vy y—1 .\ 1 dT,  (y—1)M* 4f
E“—y_lﬁ{(“—z M)T—Da;*—r ‘D

indicating that dS[dz is due to two quasi-independent sources,
related by heat transfer-boundary layer intraction. Since the influ-
ence coefficient relating entropy gradient and the rate of change of .
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duct area is zero in the Shapiro-Hawthorn model, the influence of
irreversibility effects, manifested by that part of the entropy
gradient not due to heat transfer, on duct area cannot be determined
directly. The present analysis overcomes this problem and also
gives a more realistic picture than is obtained by considering purely
diabatic variable area flow along lines suggested by Barrere et al.®

2. THE BASIC RELATIONSHIPS

Consider one-dimensional steady shock free flow of a perfect gas
having constant specific heats and molecular weight, in a passage of
variable area, 4= A(z). Suppose there is heat exchange from the
surroundings such that 7'y=7T(x) and due to both heating (cooling)
and dissipation there is a variation in the specific entropy along the
passage, S =8(x). Let suffix 1 refer to conditions at a datum point,
xr=2a,, near the inlet.

From thermodynamics, the entropy gradient at any point  along
the duct is,

as vy a d

i) ] PR
dx y—le:ﬂin Rdn:ln 4 &
The isentropic stagnation pressure and temperature are, by defi-
nition,
y—1 y/(y—1)
po=p(1+ 15" are) (2)
_ )1
To=T(1+ 5 Mz (3)

from which it is seen that,

d _d vy d Pl e _
d _d d y—1 .

Using Eqgs. (4) and (5) in Eq. (1) it follows that
1d8 _ oy d

d
E%—-‘y—-_laﬂ—ln TO—EIHPO (6)
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This equation can be integrated with respect to distance x to show
the entropy change is,

8-8, Y T, Py
C R e P L s 7
R y—1 (Tol (Z"nl )
or in other words that
Po _ (Lo ww_l)e—(s—s.)m (8)
Do, Tol

Employing Eq. (8) it is then possible to determine a number of in-
tegral relations between the states of the gas at points along the
duct, relative to corresponding states at the datum point and in
terms of the independent variables M =M(z); To=T,(z) and §=
S(z).

3. THE INTEGRAL RELATIONS

Integral relations between the properties at arbitrary point z and
datum point #; may be obtained by using Eq. (8) in conjunction
with other equations which involve only point funections.

For example, using Eq.(2) and Eq. (8) it is seen that

- yl(y—1)
14 220

ya I e _&_ YKYFI)E-'(S-—SI)IR (9)
P1 l_l_ 7"—1 M'_), Tth
\ 2

and by Eq. (3), it follows that

¥—1 2
p g A
o, |yl o, (10)
1 o0l1+ '}’_2_ M
The ratio of densities is found from the equation of state,
p=oRT (11)
Thus, 2 .2 &
0, P, T
y—1 1y-1)
L+ 2= _
= _—2__ (T_O)”w 1)3—(S—S=)IR (12)
TEEL V_g_l M2 To,

by Egs. (9) a,nd (10).
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By using the equation of continuity,
QAM0=91A1M101 (13)

the area ratio is found to be

1
A _ oMy Ty
A5 M\NT

= L (y+1)/2(y-1)
(S T

M, 2 T, \(v+oizy-1
g fea e o eS=SDIR  (14)

And by definition of local Mach number,

1
LA F R
Vi M\T,

1

=l 1
1+ ”TMg 2

M 7, )
= — fe i = (15)
M, I };71 M2 (Tol

[T

Finally the ratio of impulse functions is found as,

F  pd (1+7!M2)

F, ™ p, A\ 1T+ M2

e 1
14 Y=L ap\a

' 1
_M, 2 : L+ y M2 (T \? (16)

Thus, providing 7'y(z), 8(z) and M(x) are known it is possible to
use Eqgs. (9), (10), (12) and (14) through (16) to find values of the
dependent variables p(z), 7'(z), o(z), 4(x), V(x) and F(x) at any point
along the duct. In application, however, there is difficulty in that
whilst M(x) can be prescribed, 7'y(z) can only be determined if the
temperature distribution along the passage and the walls is known:
and 8(z) cannot be readily found. Whilst the integral relations give
a qualitative picture of how the dependent variables are affected
by both heating and entropy change it is clear the model is not very




312 R. A. A. BRYANT

suitable for design purposes. Nevertheless it is possible to apply
the results in some special cases.

Before proceeding there is one additional result which is useful.
It is obtained by considering the mass flow rate.

The basic relationship for mass flow rate per unit area is,

1 1
@) o

which can be written as

1 1 1
= () wr (5)(30) () () oo
4 RT°1 ‘MPU; Po/ \Po, 7, T

By using Eqgs. (2), (3) and (8) this becomes

m_ [y \2 M T, \rt0siy-n _ o
A4~ (RTO ) Po y—1  \@FDORG-D (‘ﬁ e DIR
| R M) l (19)

or, on rearrangement,

1
ﬁ(RT‘h)z—: MA (?L)WHW"_”e—(s—s.)m
p"x v (1 i y; 1 Mz)(v+1)lz('v—1) T“:

Equation (20) gives a general relation between M, 4, T,and § for
a specified mass flow rate with datum conditions p,, 7, 8; at
area. A,.

(20)

4. SOME SPECIAL CASES

It will be noticed several simple types of flow appear as special
cases of the foregoing integral relations.

By putting 7, T,, 8=48;, results identical with those of an
isentropic analysis are obtained.

Adiabatic variable area flow is obtained by putting 7,=T
see Ref. 3) and diabatic constant area flow by putting A= A4,.
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In the latter case it follows from Eq. (14) or Eq. (20) that

Lt y—1 M2~ (y+1)/2(y=1)
%1 2 _ (%L )w+1)fz(v--1)e_(s_SmR
-1
1+ = g
q (y+1)/2(y—1) -
=(1+ T e—(S—8)/ (21)
plo,

where ¢ is the heat added between z; and z.

The geometry of ducts for adiabatic flow with constant Mach
number, and hence constant static temperature may be discovered
by using Egs. (20) and (3) to state,

1
E(RTUI)Z (1 + %1 M%)(T+1)!2(v—1)= M. A e—(S=8)/R (22)

Pos ¥
It is seen the area must vary according to
i Ale(s—S.)IR : (23)

which result) may also be obtained directly from Eqs. (10) and (14).

From consideration of Eq. (9) it is evident Eq. (23) iz equivalent to
pA=const. That is to say Eq. (23) represents the well-known. p 4
family of ducts which diverge for all Mach numbers.*) However, in
the case of non-adiabatic flow when constant Mach number does not
imply constant static temperature, a different result is obtained
using either Eq. (22) or Eqgs. (10) and (14). It is,

4 _ %e(s—snm (24)

A,
Similarly non-adiabatic flow with constant static temperature
involves an area ratio,

.il.. = -'1'—{[1 e(S=51)/R (25)

4,
The ducts indicated by Eqgs. (24) and (25) will be different from the
pA family.

5 THE LOCATION OF THE CRITICAL AREA

To investigate the influence of the independent variables it is more
profitable to use the foregoing equations in differential form. As an
example let us see what can be said about the location of the critical
area.
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The differentiation of either Eq. (14) or Eq. (20) yields,

G-
dd _ A= \au A y+1 \ar,, Ads
dz - M1+ M| dw " T \2Ay—-1) ) de T Edx (26)
in which the entropy gradient can now be split into two parts to

account for heating and irreversibility effects separately. This
is done by putting
dS a8 ds;
Y T ek
where dS'[dx = (Cp|T)(dT,/dx), by definition of the thermostatic
entropy function and dS;[dz is positive due to the irreversibility
of the real thermodynamic process.
It follows that

e OP ( + £ Mz)d—T— and hence,

de ~ T, dx
AdS" A4y ,\dT,
E%_T—O'—(l+ 5 M) =t (28)

As will be seen, by using Eqs. (27) and (28) the entropy gradient
due to irreversibility can be retained and the entropy gradient
due to heat transfer incorporated in the second term on the R.H.S.
of Eq. (26). The result is,

-1+ e | @ T, T2 Raw 29

M2-1
id 4 ﬁ) dM A(1—|—yM2)dT L Ads,
which gives an idea of the influence of heating on the location of
the critical area if we put M =1. On doing so it is evident that

d4 A* (41N [dT \* A* (dS;\*
(?zz) T*( E )(?z? +r("ﬂ &
which leads to the immediate conclusions, for heating with (d7', [dx)*
=0, that (d4[dz)*=0 and hence A4* must be located downstream
of the minimum cross section (throat) of the passage. It is apparent

heat addition tends to move the critical area downstream from its
location in adiabatic flow: that is to say move it further downstream

e
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from the throat.t On the other hand it appears from Eq. (30) that
cooling, (dT,[dz)*<0, will cause the critical area to shift towards
the throat. Barrere ef al.®® who considered the case of diabatic flow
state that cooling can move the critical area upstream of the minimum
cross-section. However, in terms of the present analysis, (d4 /dx)*
can only be negative if the first term on the R.H.S. predominates.
There is already ample evidence from other models® that cooling
due to heat transfer cannot be preponderant and thus it is safe
to infer the critical area should always lie between the throat and
adiabatic locus when cooling occurs; and it should always be down-
stream of the adiabatic locus when heatig occurs.

6. EFFECTS OF HEATING AND COOLING

Entropy change affects the pressure and density distributions
as shown in Eqs. 9 and 12. The pressure gradient is found, from
Eq. 9, to be

e _ _ P yﬂ—fl aM _pd8 _y pdl, (31)
e~ M 1+”—2—M2 dv ~ Rdw  y—1T, dv
in which
g_dS pdS’_l_pdS
Rdy R de R do
2 B ¥ [y ¥ apNall, 95
_Toy—l(1+ 5 M)d:c+R = 2)
Thus it is seen that
2
i _ _ 2 ?Ml My P =11 dT, _p db; (33)
dz b4 1+” M| dx " y—1T,\ 2 dz R dx

Here, with dS;/dx = 0itis evident that, for flow acceleration, dM /d*
> 0, heating always tends to increase the negative pressuregradient;
on the other hand cooling always tends to reduce the negative pres-
sure gradient.

T It is implicit, here, that ds;/dx will be identical for both adiabatic and
non-adiabatic cases which need not be true. However, the assumption is justi-
fiable in terms of our basic assumptions.




316 R. A. A. BRYANT

Similarly it is seen from Eq. 12 that,
MZ

de . Gl—F—g—|oM 0d8 -1 e dly
dz =~ M |1+ VTMz dv Rdx " y—1T, dz (34
where

N y=lanYdly o
Rdx_Tny—l(1+ 5 Mg T
That is to say

2
de _ e ]{1 aM o 1 yM*\dT, odS;
&~ "M \1+— e [T T, 5 )@ TR dx (38)

ds;
dx

by which it is seen for flow acceleration, that heating also tends
to increase the negative density gradient whilst cooling tends to
decrease the negative density gradient.

7. CONDITIONS AT THE THROAT

In isentropic flow the throat and critical areas coincide. And
with M = M*=1; (dA[dx)* =0 it follows from Eq. (26) that (dM [dz)*
is indeterminate. Hence, vide Eqgs. (31) and (34), (dp/dx)* and
(do/dx)* are also indeterminate in isentropic flow.

Such conditions do not occur here as we get from Eq. (29),

Yol pem M ?=1 2
%ﬂf=(1+ s %Z—A—T—(H 5 M 1 du—f"
SO U7 B e L W ¢
-1
Ml1+X—= m2\as.
| i o
M1 |
which, on putting (dA[dx)=0, shows that
() ()
dx /, 2T, M1 I dz
o, 1+ 2= Loz (s, )
g e (38)
-1

at the throat.
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This indicates for heating with

aTe\ _ o
d:vt

and M,<1
that (ﬂ‘f’) =0
dw |,

On the other hand with cooling,

(dTo) .

de |,

and M,<1

it is clear (dM [dw), can be negative only if

(@)=t mm)@) @

There is no evidence this is possible. In fact the evidence available
from experimental studies indicates the contrary, viz.

(@) (o) (2 w0
dz /, B \1+yM} dx /,

This being so, it is possible to obtain explicit relationships for
the pressure and density gradients at the throat. The pressure
gradient is found, from Egs. (33) and (38), to be

dp\ _ p (1+yME\(dT, LB (y—1)Mi+17]/dS; (41)
de ), To,\ MP—-1 dz |, R Mi-1 dx |,
which, with M,<1 indicates

dp
(%)I =0 (42)

Similarly it may be shown from Eqgs. (36) and (38) that

=1
&) Ty | — = |\ & ), "R\ G—-1 )\ @& ), 43
Mi-1

which leads to the conclusion that

do
(Ez‘x‘)f 0 (44)
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CONCLUSION

The present model gives a fairly complete picture of conditions
likely to be met in real nozzle flows, atleast within the perfect gas
assumptions.

It is not a particularly useful model; however, it does knit together
information which must otherwise be presented in considerably
less tractable form. Certainly it presents the subtle differences
between isentropic, adiabatic, reversible non-adiabatic and irrever-
sible non-adiabatic flows in a unified fashion. In this regard it may
be of some immediate use for instructional purposes.

As it is a one-dimensional model it suffers from the usual ina-
dequacies of one-dimensional theory. Thus before trying to use
or extend it some experiments are necessary to discover whether
the theory does represent real flow conditions adequately.
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AN ANALOGUE COMPUTER FOR THE
SOLUTION OF DRAINAGE PROBLEMS

H. A. SCHOLER
Department of Public Works, Sydney, N.S.W.

Synopsis — A hydraulic analogue computer is described which consists
of storage tanks interconnected by pipes which represent culverts,
creeks and other connections between prototype basins. Resistance in
these pipes can be varied by the manipulation of valves. The stages of the
river are represented by an outlet tank whose level variation can be
made to represent that of a prototype flood.

The outline of an electric analogue computer is given and the compara-
tive economies of this and the hydraulic analogue are discussed.

LIST OF SYMBOLS

Surface area of basin at any given height

Cross-sectional area of culvert or channel

Resistance coefficient for model

Resistance coefficient prototype

Head loss

Scale factor, used with subscript to denote which scale factor,
e.g. K, is scale factor for area

Manning’s »

Discharge

Hydraulic radius

Ohmic resistance

Water surface slope

Time

Velocity of flow

Height of water surface above some datum.

Subscripes:

m
p

Model
Prototype
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