INFORMATION CAPACITY OF RADIO NETWORKS

Stephen V. Hanly
King’s College
Cambridge University

August, 1993

\[^{1}\text{A dissertation submitted for the degree of Doctor of Philosophy of the University of Cambridge.}\]
Preface

I hereby declare that this dissertation is not substantially the same as any that I have submitted for a degree or diploma or other qualification at any other University. I further declare that no part of this dissertation has already been or is being concurrently submitted for any such degree, diploma or other qualification.

Part I is based on work done in collaboration with Phil Whiting \(^1\). Part II is the result of my own work and includes nothing which is the outcome of work done in collaboration with others.

\(^1\) Then at the Department of Electronic and Electrical Engineering, Royal College, University of Strathclyde, 204 George St., Glasgow G1 1XW, U.K. Present address: Bell Laboratories, Lucent Technologies, 600 Moutain Ave., Murray Hill, NJ, U.S.A.
Acknowledgements

There are very many people in the Statistical Laboratory and elsewhere that have contributed to this thesis. Firstly, I’d like to give special thanks to my supervisor, Frank Kelly, for handing me such a great project. Frank is well known for his generosity with ideas, and this project is one such example. In spite of the many claims on his time, his remarkable insight always provided the right direction at the right time.

I have much pleasure in thanking Phil Whiting for his major contribution to this thesis. Part I is based on work done in collaboration with Phil; being friends with Phil and doing this joint research are the highlights of my time in Britain.

I’d also like to thank the following people for very useful discussions and suggestions with regard to the mathematics: Nigel Bean, David McMillan, Debasis Mitra, Roland Tegeder and Ilze Ziedins. I’d especially like to thank Roland for giving up time to explain large deviations, and for the reference on compartmental systems, enabling Chapter 10 to be completed.

The following people read final drafts of the thesis and provided very useful criticisms: Frank Kelly, Phil Whiting, Nigel Bean, Richard Gibbens and Peter Taylor. In particular, I’d like to thank Nigel, not only for his very thorough reading and criticism of Part I, but also for sharing an office with me and putting up with the mess! Neil Laws and Duncan Sands - thanks too in this regard.

Finally, I’d like to thank my friends in Cambridge, and my family and friends at home for supporting me. The Commonwealth Scholarship and Fellowship Plan provided the financial means to do this research for which I’m very grateful.
Contents

1 **Introduction** ... 1
 1.1 Overview ... 1
 1.2 Mobile radio, cellular networks and macrodiversity 2
 1.3 Summary of Part I .. 4
 1.4 Summary of Part II .. 4

I **A Shannon model of a radio network** 7

2 **Introduction to Part I** .. 9
 2.1 Overview ... 9
 2.2 Assumptions ... 10
 2.3 Justification for focus on uplink 11
 2.4 Final remark .. 11

3 **Shannon's theory of information and multi-user information theory** ... 13
 3.1 Introduction .. 13
 3.2 Shannon's theory of information 13
 3.2.1 Entropy, a measure of information 13
 3.2.2 Channel capacity ... 14
 3.2.3 Continuous random variables 16
 3.3 Gaussian channels .. 16
 3.3.1 Discrete time Gaussian channels 17
 3.3.2 Continuous time processes with power constraints 17
 3.3.3 Bandwidth constraints 17
 3.3.4 Band limited white noise 19
 3.3.5 The white noise channel 19
 3.4 Multi-user Information Theory 20
 3.5 The Gaussian multi-user channel 22
 3.5.1 The discrete time Gaussian channel 22
 3.5.2 The continuous time white noise channel 22
 3.5.3 Examples of Gaussian, multiple access channels 23
 3.6 Conclusions .. 25

4 **Shannon capacity of multi-receiver networks and bandwidth partitioning** ... 27
 4.1 Introduction .. 27
 4.2 A multi-receiver Gaussian channel 28
 4.3 Multi-user, Multi-receiver ... 30
 4.4 The biting constraint and power control 31
 4.5 Two cell network capacity ... 32
8.5.4 Large deviations for $\beta = 1$.. 94
8.6 Voice activity and large deviations .. 95
8.7 Adaptive power control .. 95
8.7.1 A 1 dimensional manifold .. 95
8.7.2 An adaptive, decentralised power control algorithm 96
8.7.3 Adaptive power control in two cells 97
8.7.4 External noise zero ... 99
8.7.5 Connections with power control algorithms in the literature 99
8.7.6 Metzler matrices ... 101
8.8 Expanding and contracting cells .. 101

9 A multi-receiver spread spectrum channel: capacity 103
9.1 Introduction ... 103
9.2 Chapter overview .. 103
9.3 The signal to noise ratio in multi-receiver spread spectrum 104
 9.3.1 Transmission delay and a simple macrodiversity scheme 105
 9.3.2 Further justification for assuming correlations are zero 106
9.4 Capacity and the received power equations 106
 9.4.1 The nature of \mathcal{L} ... 111
9.5 An interpretation in terms of costs and capacities 112
9.6 J classes of user ... 113
9.7 Voice activity and the Chernoff bound 113
9.8 Listening with 2 receivers in a 3 receiver network 113
 9.8.1 An approximate model in which user interference is ignored ... 114
 9.8.2 An approximate model in which external noise is ignored 115
9.9 Received power limitations and capacity utilisation 117
 9.9.1 The constant received powers case 118
 9.9.2 Sufficiently uniform traffic .. 119
 9.9.3 Nonuniform traffic .. 120
9.10 Examples of capacity calculations .. 120
 9.10.1 Constant received powers case ... 120
 9.10.2 Nonuniform traffic .. 121
9.11 Conclusions ... 121

10 A multi-receiver spread spectrum channel: adaptive power control 123
10.1 Overview ... 123
10.2 A decentralised, adaptive power control algorithm 123
 10.2.1 Divergence of the vector field ... 124
 10.2.2 Global stability when $K = 2$.. 125
10.3 Compartmental systems and column diagonal dominance 126
10.4 A compartmental power control algorithm 127
10.5 A question of decentralisation ... 128
10.6 Phase portraits .. 128
10.7 A mathematical description of the phase portraits 130
 10.7.1 The vector field on \mathcal{L} .. 130
 10.7.2 The linearised system for $K = 2$ 132
10.8 Final remarks on the cellular and macrodiversity algorithms 135
10.9 Conclusions .. 136

A Tightest constraint sets .. 137
B Some results on positive definite, symmetric matrices

C Code division multiple access and frequency hopping
 C.1 Direct sequence CDMA ... 145
 C.2 FDMA ... 147
 C.3 Frequency hopping ... 147
 C.4 Applicability of the signal to noise model 148

D The cost of interference in the signal to noise model

E Deviations beyond the central limit theorem
 E.1 Deviations of an average of random variables 153
 E.2 Deviations of products of averages of random variables .. 155
 E.2.1 \(\mu_0 \neq 0 \) .. 159
 E.2.2 \(\mu_0 = 0, \mu_1 \neq 0 \) 160
 E.2.3 \(\mu_0 = 0, \mu_1 = 0 \) ... 161

F Proof of Theorem 9.6

G Proof of Theorem 9.7

Bibliography
List of Figures

1.1 Hexagonal cell layout ... 3
3.1 Two user rate region for Q_1 and Q_2 .. 21
3.2 Two user capacity in white noise ... 23
4.1 Diversity reception for a single user with K receivers 29
4.2 A network with two receivers ... 32
4.3 Optimal vs. bandwidth partitioning for the two cell network 34
4.4 K receivers in a circle ... 40
5.1 Approaching the Shannon limit cancelling in groups 52
8.1 A two cell network ... 84
8.2 Comparison of capacity regions .. 89
8.3 Power control under light loading ... 98
8.4 Power control under heavy loading .. 99
8.5 Cell 0 contracts .. 102
9.1 Capacity region for two groups ... 115
10.1 Decentralised alg. (two receivers) .. 129
10.2 Decentralised alg. (three receivers) 1. 130
10.3 Decentralised alg. (three receivers) 2. 131
10.4 Modified two receiver algorithm .. 131