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a b s t r a c t

Existing analyses of ‘zooming’ quantisation schemes for bit-rate-limited control systems rely on the
encoder and controller being initialised with identical internal states. Due to the quantiser discontinuity
and the plant instability, it was not clear if closed-loop stability was possible if the encoder and controller
commenced from different initial conditions. In this article, we consider partially observed, unstable
linear time-invariant plants, with unbounded and possibly non-Gaussian noise, and propose a modified
zooming-like schemewith finite-dimensional internal encoder and controller states thatmay not initially
be identical. Using a stochastic pseudo-norm,weprove that this scheme yieldsmean-square stability in all
closed-loop state variables, not just the plant state, under a sufficient condition involving this initial error,
the plant dynamics and the channel data rate. With diminishing initial error, this condition approaches a
known universal lower bound on data rates and becomes tight. Furthermore, we show that the scheme
automatically corrects itself, in the sense that the errors between the internal states of the encoder and
controller tend to zero stochastically with time. This suggests that the policy will maintain stability in
the presence of channel errors, for sufficiently low bit error rates. We support these conclusions with
simulations.

Crown Copyright© 2009 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Due to the rapid growth in communication technology over
the last few years, it is becoming increasingly common to employ
digital communication networks for the exchange of information
in large control systems. Many applications have arisen in the
broad areas of sensor networks, industrial automation, vehicular
technology, irrigation and defence systems. Although the total
capacity of the network may be large, each sensor or actuator may
be allocated only a small portion, placing severe limitations on
performance. This has recently led to a vast amount of research into
the synthesis and analysis of control systemswith communication-
limited feedback — see the special issue Antsaklis and Baillieul
(2007).
Our focus in this article is on systems in which this limitation

takes the form of a digital channel carrying a finite number of
bits per unit time. Despite notable theoretical advances, the subtle
interplay between communications and control concepts and the
technical challenge posed by the discontinuous nonlinearity of

I Thematerial in this paper was partially presented at 17th IFACWorld Congress,
Seoul, Korea, July 6–11, 2008. This paper was recommended for publication in
revised form by Associate Editor Andrey V. Savkin under the direction of Editor Ian
R. Petersen.
∗ Corresponding author. Tel.: +61 3 83446701; fax: +61 3 83446678.
E-mail addresses: agurt@ee.unimelb.edu.au (A. Gurt), gnair@unimelb.edu.au

(G.N. Nair).

the channel, have made it difficult to answer many fundamental
questions, even for the basic scenario of a centralised, linear time-
invariant (LTI) plant stabilised over a single errorless channel.
Themany coding and control schemes that have been proposed

in this context can be broadly categorised according to whether
or not the resolution and range of the quantiser (i.e. analogue-
to-digital converter) depend on previous quantised values. For
the case of unstable, noiseless LTI plants with bounded but
unknown initial states, it was proven in Wong and Brockett
(1999) and Baillieul (2001) that memoryless, static quantisers
and controllers could ensure bounded plant states under certain
conditions relating the data rate to the sampled plant dynamics.
These conditions were tight for scalar plants.
The design of memoryless quantised controllers for noiseless

LTI plants has been further studied in Ishii and Francis (2003) in
terms of quadratic stability and in Li and Baillieul (2004, 2007)
with regard to the robust and efficient use of channel data rate.
In a recent article (Azuma & Sugie, 2008) on LTI plants with
fixed, finite input sets, dynamic but fixed-resolution quantisation
schemes similar to predictive quantisation and delta modulation
in communications (Gersho & Gray, 1993) were proposed and
studied.
Although the schemes above offer the advantage of simplicity,

their finite quantiser resolution and range make asymptotic
stability impossible and also retard their responses to large initial
states. The fixed range also imposes an upper bound on the largest
instantaneous magnitude of any additive process noise in the
plant, above which boundability is lost. Indeed, with unbounded
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process noise and unstable plant dynamics, it has been shown
that stochastic stability is impossible using a bounded quantisation
range (Nair & Evans, 2004), since the unbounded noise and
unstable plant dynamics will eventually push the quantiser input
progressively deeper into the quantiser saturation region.
A solution to these shortcomings is to dynamically expand

or contract (‘zoom’) the quantiser range according to the most
recent quantiser output. Zooming quantisation was first studied
in the communications literature, where it is called adaptive or
feedback quantisation, with stationary or independent, identically
distributed (iid) input signals typically assumed (Goodman &
Gersho, 1974; Kieffer, 1982). The important articles (Brockett &
Liberzon, 2000; Liberzon, 2003) contained the first formulation and
analyses of such a scheme for unstable plants in a control loop
and have been extended to accommodate process noise satisfying
an unknown bound (Liberzon & Nesic, 2007). In Nair and Evans
(2004), a zooming-like scheme was proposed and shown to mean-
square-stabilise the states of a stochastic LTI plant at any data
rate down to a universal infimum. In Fagnani and Zampieri (2004)
a ‘zooming’-like quantisation scheme for noiseless LTI plants
was also investigated in terms of controller complexity versus
performance.
Although the zooming quantised controllers discussed above

possess their own internal states, only the stability properties of
the plant state were analysed. Furthermore, these analyses relied
heavily on the assumption that the internal encoder and controller
states were initially known and identical, enabling the encoder
to exactly determine how the controller state evolved with each
transmitted bit. However, in practical channels the bit error rate
(BER)will never be exactly zero, evenwith channel error correction
coding.With probability arbitrarily close to 1, a bit will be received
erroneously after a sufficiently long time, at which point the
internal controller state will differ fromwhat the encoder predicts.
As previously noted in Nair and Evans (2004) (p. 431), given the
unstable dynamics of the plant and the discontinuous, nonlinear
nature of quantisation, it was unclear if closed-loop stability could
be maintained even if this difference was arbitrarily small. For
unstable LTI noiseless plants, this question is addressed in the
recent article (Kameneva & Nesic, 2009).
In this article, we present a solution for the case of a stochastic

LTI plant with unbounded process and measurement noise. No
statistical structure is imposed on this noise beyond having a
uniformly bounded higher moment; however, a priori knowledge
of an upper bound on this moment is not required to establish
stability. We present our formulation in Section 2, focusing
on scalar plants initially, and construct in Section 3 a time-
invariant, finite-dimensional, dynamic coding and control scheme.
In Section 4, we prove that a stochastic functional introduced
in Nair and Evans (2004) is a pseudo-norm and then use this to
establish mean square stability in all closed-loop state variables,
not just the plant state, under a sufficient condition on the channel
data rate, the plant dynamics and certain parameters of the
encoder and controller.
We then show in Section 5 the surprising result that the internal

states of the encoder and controller asymptotically converge in
mean absolute and proportional almost-sure senses. This suggests
that the scheme may also be able to achieve stability over
erroneous channels at sufficiently low BER’s. In this context the
time-invariance of our scheme is useful, since the encoder and
controller do not know in advance when a bit error occurs.
Though the important articles (Matveev & Savkin, 2007a,b) have
provided rigorous, tight criteria for stabilisability over erroneous
channels (albeit in almost-sure asymptotic and bounded senses,
not mean-square), the constructions presented there require the
random generation of long error-correction codes, unlike the case
here. The idea of achieving immunity to channel errors by using

Fig. 1. Dynamic quantised control scheme.

an appropriately designed zooming quantiser was investigated
in Goodman and Wilkinson (1975), in the context of encoding
and decoding an iid process under an expected logarithm error
criterion. In contrast, we consider the stronger objective of mean
square stability and must also cope with the presence of feedback
and unstable plant dynamics.
In Section 6, we extend these results to multi-input multi-

output plants with n-dimensional states, using the technique
of down-sampling. Furthermore, we show that as the initial
error between encoder and decoder states diminishes, the
corresponding sufficient condition for stability approaches a
known universal lower bound for mean square stabilisability in
the plant state (49). Finally, simulation results supporting these
conclusions are presented and discussed in Section 7.

2. Formulation

To begin with, consider the stochastic, scalar plant

X(t + 1) = λX(t)+ bU(t)+ V (t), Y (t) = cX(t)+W (t), (1)

where X(t),U(t), Y (t), V (t),W (t) ∈ R are the plant state, input,
output, process noise and measurement noise respectively and
where t ∈ Z≥0. It is assumed that b, c 6= 0 and that

A1: ∃ a known ε > 0 s.t. E{|X(0)|2+ε}, supt≥0 E{|V (t)|2+ε},
supt≥0 E{|W (t)|2+ε} <∞.

Remark. Bounded higher moment conditions such as A1 are also
found in quantisation theory (Graf & Luschgy, 2000). They admit
not only exponentially decaying distributions such as theGaussian,
but also distributions with ‘fat’ power-law tails.

As depicted in Fig. 1, the plant output Y (t) is encoded into a
symbol S(t), which is transmitted over an errorless digital channel,
decoded and then converted into a control input U(t). The symbol
S(t) transmitted over the channel at time t is chosen from a finite
and possibly time-varying alphabet S(t), with a finite (average)
channel data rate

R := lim inf
τ→∞

1
τ

τ−1∑
t=0

log2 |S(t)| <∞ (bits/sample). (2)

The encoder and controller have their own, finite-dimensional
internal states Ψ e(t) ∈ Re and Ψ c(t) ∈ Rc respectively, which
are updated recursively:(
Ψ e(t − 1), Y (t)

)
7→ Ψ e(t), S(t) = m

(
Ψ e(t)

)
∈ S(t) (3)(

Ψ c(t − 1), S(t − 1)
)
7→ Ψ c(t), U(t) = k

(
Ψ c(t)

)
∈ R. (4)

We define a finite-dimensional encoder-controller (FDEC) by the
alphabet sequence {S(t)}∞t=0 together with the finite-dimensional
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and possibly time-varying mappings (3)–(4). Examples of FDEC’s
include the zooming quantisers of Brockett and Liberzon (2000),
Liberzon (2003), Fagnani and Zampieri (2004) and Liberzon and
Nesic (2007) and the finitely recursive coding and control scheme
ofWong and Brockett (1999), all proposed for linear time-invariant
(LTI) plantswith bounded or no noise, aswell as the scheme of Nair
and Evans (2004) for stochastic LTI plants with unbounded noise.
As discussed in Section 1, a critical assumption upon which

the stability analyses of these previous schemes relied was that
the initial internal states Ψ e(0),Ψ c(0) matched exactly, allowing
the encoder to predict the controller internal states exactly if no
transmission errors occur. Given the unstable dynamics of the
plant and the discontinuous quantiser nonlinearity, it was unclear
if closed-loop stabilitywould bepreserved if this initialmatchwere
not exact or if a symbol error were to occur in the channel.
In this paper, we construct a specific FDEC for the stochastic

plant (1) and show that it ensures mean square stability in all
closed-loop state variables, i.e.

sup
t≥0
E{|X(t)|2}, sup

t≥0
E{‖Ψ e(t)‖2}, sup

t≥0
E{‖Ψ c(t)‖2} <∞,

under a criterion involving plant and FDEC parameters, the channel
data rate and a known bound on the proportional error between
the initial internal encoder and controller states (Theorem 3).
Furthermore, we show that the internal states of the encoder and
controller asymptotically ‘resynchronise’ with time (Theorem 5,
Corollary 6), suggesting that stability may be maintained despite
symbol errors in the channel (Section 7.2). We extend this FDEC
to plants with n-dimensional states and show that in the limit
of vanishing initial error, the sufficient criterion approaches the
universal lower bound (49) for (mean-square) stabilisability and
thus becomes tight (Theorem 7).

3. Stabilising scheme

In this section, we propose a specific time-invariant, finite-
dimensional encoder-controller (FDEC) for the partially observed,
stochastic plant (1).
Like the scheme proposed in Nair and Evans (2004), the FDEC

here quantises a dynamically scaled error between the filtered
plant state and the prediction based on the previous encoded state.
However, since we no longer assume that the internal encoder
and controller states match or that the encoder knows the exact
control input, it turns out that the closed loop dynamics here are
determined here by not just one but three coupled error terms –
between the encoded and filtered plant state, between the decoded
and encoded plant state and between the actual and filtered state –
aswell as three corresponding dynamic scaling factors. In addition,
we permit a linear controller gain g , instead of a deadbeat-like law.
At time t , the internal encoder state is of the form

Ψ e(t) =
(
X̂(t|t − 1), Xe(t), LeG(t), L

e
J (t), L

e
H(t)

)
∈ R2 × R3>0. (5)

The first component, X̂(t|t− 1), is a prediction of the plant state at
time t given the outputs up to time t − 1, the second component
Xe(t) is the encoded state, and the last three components are
dynamic scaling factors used to adjust the quantiser range. The first
component is updated as

X̂(t + 1|t) = λX̂(t|t − 1)+ bgXe(t)+ ko[Y (t)− cX̂(t|t − 1)]. (6)

This is a linear Luenberger observer with gain ko, but with one
important difference: due to the uncertainty in the initial decoder
internal state, the encoder does not precisely know the control input
applied at time t and so approximates it by gXe(t), g being the
selected control gain.

Fig. 2. Quantiser points and intervals (µ = 2). Boundary points and quantiser
points are denoted by ‘.’ and ‘x’ respectively.

The second component, Xe(t) is updated according to a
dynamic, predictive quantisation scheme, employing the non-
uniform, oddly symmetric, static quantiser q(·) of Nair and Evans
(2004) (pg. 425). For reasons of space we refer the reader to that
article for a detailed discussion and analysis of its properties.
Briefly, for given integers µ, ν ≥ 2 and real % > µ2/ε , q(·) acts by
first partitioning the real line into M = µν non-uniform intervals
as follows:

• [−1, 1] is partitioned into (µ2 − 2)µν−2 intervals of length
2/[(µ2 − 2)µν−2],
• ±(%i−2, %i−1] are each partitioned into (µ−1)µν−i intervals of
length (%i−1 − %i−2)/[(µ− 1)µν−i], ∀i ∈ [2, 3, . . . , ν],
• ±(%ν−1,∞) are left as the right- and left-most intervals.

These quantiser intervals are denoted I(s), s ∈ [0, . . . ,M − 1],
ordered from left- to right-most, and are finer closer to the origin
and coarser, further away (see Fig. 2). Due to this nonuniformity,
each I(s) is associated with a resolution κ(s), as well as a quantiser
point$(s):

κ(s) :=

half-length of I(s), 1 ≤ s ≤ M − 2
% − 1
2− 2/µ

%ν−1, s ∈ {0,M − 1} (7)

$(s) :=


midpoint of I(s), 1 ≤ s ≤ M − 2,(
1+

% − 1
2− 2/µ

)
%ν−1, s = M − 1,

−

(
1+

% − 1
2− 2/µ

)
%ν−1, s = 0.

(8)

q(x) := $(s) if x ∈ I(s). (9)

At time t , the symbol transmitted is the unique index S(t) ∈
[0, . . . ,M − 1] of the quantised, dynamically scaled prediction
error,

$(S(t)) = q


[
X̂(t + 1|t)− (λ+ bg)Xe(t)

]
Le(t)

 . (10)

The corresponding data rate is R = log2M = ν log2 µ bits/sample.
The encoded plant state and scaling factor Le(t) are then updated
according to

Xe(t + 1) = (λ+ bg)Xe(t)+ Le(t)$(S(t)) (11)

Le(t) = |λ|LeG(t)+ |k
oc|LeJ (t)+ |k

o
|dW , (12)
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LeG(t + 1) = L
e(t)κ(S(t)) (13)

LeJ (t + 1) = |λ− k
oc|LeJ (t)+ |bg|L

e
H(t)+ dV + |k

o
|dW (14)

LeH(t + 1) = |λ+ bg|L
e
H(t)+ ηL

e(t)[1+ κ(S(t))], (15)

where dV , dW , η > 0 are arbitrary positive constants.
Note that (11)–(15) only explicitly depend on the current trans-

mitted symbol and theprevious value of (Xe(t), LeG(t), L
e
J (t), L

e
H(t)),

and not directly on the filter output X̂ . Thus, at the other end of the
channel, the controller can run an exact copy of these update laws,
but on its own internal state

Ψ c(t) :=
(
X c(t), LcG(t), L

c
J (t), L

c
H(t)

)
∈ R× R3>0. (16)

It receives the symbol S(t − 1) ∈ [0, . . . , µν − 1] at time t ≥ 1
(due to the delay in the channel) and then sets

X c(t + 1) = (λ+ bg)X c(t)+ Lc(t)$(S(t)), (17)

Lc(t) = |λ|LcG(t)+ |k
oc|LcJ (t)+ |k

o
|dW , (18)

LcG(t + 1) = L
c(t)κ(S(t)), (19)

LcJ (t + 1) = |λ− k
oc|LcJ (t)+ |bg|L

c
H(t)+ dV + |k

o
|dW , (20)

LcH(t + 1) = |λ+ bg|L
c
H(t)+ ηL

c(t)[1+ κ(S(t))], (21)

U(t) = gX c(t). (22)

Remark. The quantities LxG(t), L
x
J (t) and L

x
H(t) (x being ‘e’ or ‘c’) can

be regarded as thenominal uncertainties associatedwith the errors

J(t) := X̂(t|t − 1)− X(t), (23)

G(t) := Xe(t)− X̂(t|t − 1), H(t) := X c(t)− Xe(t), (24)

due to quantisation and noise. These uncertainties contribute dy-
namically to the quantiser scaling factor and the encoded/decoded
state estimates via (11)–(12) and (17)–(18). As will be seen in
the next section, the update rules (12)–(15) and (18)–(20) are
designed to closely mimic the dynamics (31)–(33) of the corre-
sponding terms (23)–(24).

4. Internal stability analysis

We prove here that the time-invariant, finite-dimensional
encoder-controller (FDEC) (6)–(22) achieves internal mean square
stability, in the sense that all closed-loop state variables have
second moments that are uniformly bounded over time.

4.1. Pseudo-norm

The unbounded noise and quantiser nonlinearity make it
difficult to directly obtain recursive bounds onmean square norms.
Instead, we use a pseudo-norm

‖X, L‖∗ :=
√
E
{
L2 + |X |2+ε L−ε

}
∈ [0,∞], (25)

defined on the space of random vectors (X, L) ∈ R × R≥0.1
This functional was introduced in Nair and Evans (2004) (p. 425).
Though not observed there that it obeyed the triangle inequality
(see Appendix A), it was however shown that

‖X, L‖2
∗
≥ E{X2}, E{L2} (26)

1 As the underlying space is not linear, ‘pseudo-norm’ is a slight abuse of common
terminology.

and that the errors produced by the quantisation mappings q(·)
and κ(·) (7)–(8) satisfy∥∥∥∥X − Lq(XL

)
, Lκ(S)

∥∥∥∥
∗

≤
ζ

µν
‖X, L‖∗, ∀ν ∈ [2, 3, . . .). (27)

In the second bound, ζ > 0 is a constant that depends on ε
and the quantiser parameters µ, %, but is independent of ν and
the distribution of X, L. This independence, together with the
appearance of ‖·‖∗ on both sides, allows it to be applied recursively
to generate useful bounds.2

4.2. Stability analysis

We first establish the mean square stability of the error terms
(23)–(24). For any t ∈ Z≥0, let

ZG(t) := LcG(t)− L
e
G(t), (28)

ZJ(t) := LcJ (t)− L
e
J (t), ZH(t) := LcH(t)− L

e
H(t), (29)

F(t) := max

{
|ZG(t)|
LeG(t)

,
|ZJ(t)|
LeJ (t)

,
|ZH(t)|
LeH(t)

}
. (30)

We have the following result:

Lemma 1 (F(t) Decreases Monotonically). Let the FDEC (5)–(22) be
used on the plant (1). Then the maximum proportional scaling error
(30) decreases monotically to a limiting random variable F∗ ≥ 0with
time, whether or not the closed loop is stable.
Proof. See Appendix B. �

From (1), (6), (11) and (17), as well as the even symmetry of the
quantiser, it is straightforward to show that the coupled dynamics
of the random errors (23)–(24) are given by
G(t + 1) = λG(t)+ kocJ(t)− koW (t)

− Le(t)q
(
λG(t)+ kocJ(t)− koW (t)

Le(t)

)
(31)

J(t + 1) = (λ− koc)J(t)− bgH(t)− V (t)+ koW (t), (32)
H(t + 1) = (λ+ bg)H(t)−

(
Lc(t)− Le(t)

)
q

×

(
λG(t)+ kocJ(t)− koW (t)

Le(t)

)
. (33)

Now define the non-random 3-vector

β(t) :=
[
‖G(t), LeG(t)‖∗, ‖J(t), L

e
J (t)‖∗, ‖H(t), L

e
H(t)‖∗

]T
. (34)

Pseudo-norm properties and the quantiser error bound (27) yield
the following bound:

Lemma 2 (Recursive Bound on Pseudo-Norm). Suppose the FDEC
parameter η (15), (21) upper-bounds F(0), the initial proportional
scaling error (30). Then the error pseudo-norm vector (34) obeys the
sublinear non-negative recursion

β(t + 1) ≤ Ξβ(t)+ χ, ∀t ≥ 0, (35)

component-wise, where χ ∈ R3
≥0 is defined in (C.5) and

Ξ :=

 ζ |λ|µ−ν ζ |koc|µ−ν 0
0 |λ− koc| |bg|

η|λ|

(
1+

ζ

µν

)
η|koc|

(
1+

ζ

µν

)
|λ+ bg|

 , (36)

with ζ being the constant of (27).

2 It can be shown that no quantiser can yield a similar bound in terms of root-
mean square quantities; either ζ would be distribution-dependent, or the RHS
would involve a highermoment of X (Graf & Luschgy, 2000), rendering it impossible
to apply recursively.
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Proof. See Appendix C. �

This result enables us to derive a condition for internal mean
square stability as follows. IfΞ (36) is Schur, i.e. has eigenvalues in-
side the open unit disc, then (35) yields uniformly bounded {β(t)}.
By the pseudo-norm property (26), {G(t), J(t),H(t), LeG(t), L

e
J (t),

LeH(t)} are then mean-square bounded over time. Using (23)–(24)
to rewrite the plant dynamics as

X(t + 1) = (λ+ bg)X(t)+ bg[H(t)+ J(t)+ G(t)] + V (t) (37)

and observing that {V (t)} is uniformly mean-square bounded and
|λ+ bg| < 1, it follows that {X(t)} is also uniformly mean-square
bounded.
Nownote from (23)–(24), (28)–(30) and Lemma1 that X̂(t|t−1)

= X(t) + J(t), Xe(t) = X(t) + J(t) + G(t), X c(t) = X(t) +
J(t) + G(t) + H(t) and that Lcx(t) ≤ (1 + η)Lex(t), where
the subscript ‘x’ denotes any of ‘G’, ‘J ’ or ‘H ’. Thus {X̂(t|t − 1),
Xe(t), X c(t), LcG(t), L

c
J (t), L

c(t)} are alsomean square boundedover
time. These conclusions are summarised below:

Theorem 3 (Main Stability Criterion). Let the time-invariant, finite-
dimensional encoder-controller (FDEC) (5)–(22) be used on the
partially observed, unstable linear plant (1) having unbounded noise.
Suppose that the FDEC parameter η (15), (21)upper-bounds the initial
maximum proportional scaling error F(0) (30) and that the matrixΞ
(36) is Schur.
Then the plant state (1) and FDEC internal states (5), (16) are

uniformly mean-square-bounded over time.

Remark. If Ξ is Schur, then Ξ t → 0. By the nonnegativity of Ξ ,
the diagonal elements ζ |λ|µ−ν , |λ − koc| and |λ + bg|must then
all be< 1.

Looking at the matrix (36), observe that it becomes upper
triangular as η → 0. As the eigenvalues of a triangular matrix are
just the diagonal elements and since eigenvalues vary continuously
with matrix elements (Horn & Johnson, 1985), we immediately
have the following, simpler corollary.

Corollary 4 (Stability Criterion with Small F(0)). If the number of
quantiser levels µν > ζ |λ| and |λ + bg|, |λ − koc| < 1, then for
sufficiently small η > 0, the FDEC (5)–(22) achieves mean-square
stability in all closed-loop state variables, for any initial maximum
proportional scaling error F(0) ≤ η.

Remark. The sufficient conditionµν > ζ |λ| is stronger than given
in Nair and Evans (2004) for mean-square-stabilisable plant states,
due to the presence of the factor ζ > 1 from (27). However,
it is possible to approach the infimum average data rate
max{log2 |λ|, 0} of Nair and Evans (2004) by down-sampling; this
is illustrated more generally for plants with n-dimensional states
in Section 6.

5. Asymptotic agreement between encoder and controller

In this section, we show that since the time-invariant finite-
dimensional encoder-controller (FDEC) proposed in this paper
achieves stability, it automatically recovers with time from initial
errors in the internal encoder and controller states (5), (16). This
is an important requirement for implementation over practical
channels with small but non-zero bit error rate; otherwise, the
accumulation of successive bit errors would lead to instability.
Our first main result concerns the almost sure (a.s.), monotonic

convergence to zero of the maximum proportional scaling error
between the encoder and controller states:

Theorem 5 (F(t)→ 0 a.s.). Suppose that the time-invariant, finite-
dimensional encoder-controller (5)–(22) used on the plant (1) yields
supt≥0 E{LeG(t)

2
}, supt≥0 E{LeJ (t)

2
} and supt≥0 E{LeH(t)

2
} <∞.

Then the maximum proportional scaling error F(t) (30)monoton-
ically tends to 0 with time, almost surely.

Proof. See Appendix D. �

Remarks. This result suggests that the FDEC can be simplified
by zeroing the parameter η of (15) and (21), the role of which
is to bound F(t). It further hints that the stability criterion of
Theorem 3 may be too strong and that all that is required is for
the diagonal elements of Ξ (36) to be < 1. However, establishing
these conjectures rigorously is left for future work.

Note also that the uniform mean-square boundedness (MSB)
required of the scaling factors in this result is guaranteed if the
conditions of Theorem 3 are met.
Using Theorem 5, it is straightforward to show that the

unnormalised error between encoder and controller states must
also tend to 0 in the mean absolute sense:

Corollary 6 (Mean Absolute Convergence). If in addition to the
hypotheses of Theorem 5, F(0) is bounded above and the controller
gain k of (22) satisfies |λ+ bg| < 1, then the errors H(t) (24), ZG(t),
ZJ(t), ZH(t) (28)–(29) between the internal encoder and controller
state variables converge to 0mean absolutely with time.

Proof. See Appendix E. �

Remark. Note that all the hypotheses required by this corollary
are guaranteed by the conditions of Theorem 3.We conjecture that
the internal state errors must also converge to zero in the stronger
mean square sense, as suggested by the simulations of Section 7.
However, proving this may require more stringent hypotheses,
such as asymptotically stationary LeG(t), L

e
J (t) and L

e
H(t) or uniform

boundedness of a higher moment, and is also left for future
investigation.

6. Minimum rate and multivariable plants via downsampling

We now extend the results of the preceding sections to deal
with multi-input multi-output (MIMO) plants with n-dimensional
states. Our approach is to diagonalise and down-sample the MIMO
plant and then exploit controllability and observability to reduce it
to n scalar stochastic plants with decoupled dynamics and control
inputs. Through appropriate time-sharing between these scalar
plants, the total average rate can be brought as close as pleased
to the universal infimum of Nair and Evans (2004).
Consider the stochastic, discrete-time MIMO plant

X(t + 1) = AX(t)+ BU(t)+ V (t), Y (t) = CX(t)+W (t),
(38)

where X(t), V (t) ∈ Rn,U(t) ∈ Rm, Y (t),W (t) ∈ Rp are the
plant state, process noise, input, output and measurement noise
respectively. Assume that

B1 (A, B) is reachable and (C, A), observable.
B2 A is unstable, i.e. has spectral radius≥ 1, and is diagonalisable
with real eigenvalues.

B3 For some ε > 0, E{‖X(0)‖2+ε}, supt≥0 E{‖V (t)‖2+ε},
supt≥0 E{‖W (t)‖2+ε} <∞.

Remark. Dropping either the assumptions of diagonalisability or
the realness of eigenvalues in B2 would not change the results
below but would necessitate explicit consideration of the real
Jordan form of the matrix, resulting in a more complicated
encoder-controller.

Please cite this article in press as: Gurt, A., & Nair, G. N. Internal stability of dynamic quantised control for stochastic linear plants. Automatica (2009),
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Without loss of generality (wlog), suppose a real similarity
transformation matrix has been applied to the plant state X(t)
so that the matrix A is in diagonal form. For some sufficiently
large integer τ ≥ 2n, let the time axis be divided up into cycles
[jτ , . . . , (j + 1)τ − 1] of duration τ . The first n instants t ∈
[jτ , . . . , jτ + n − 1] of each cycle constitute the estimation phase,
during which the state X(jτ) at the start of the cycle is estimated.
The last n instants, constituting the control phase, are the only times
at which control inputs U(t) are applied. The period in between is
called the transmission phase and is described in more detail later.
Over the estimation phase, the plant outputs may be written

Ỹ (j) = OX(jτ)+ N(j), (39)

where

Ỹ (j) :=
[
Y (jτ + n− 1)T, . . . , Y (jτ)T

]T
∈ Rpn, (40)

O :=
[
(CAn−1)T, (CAn−2)T, . . . , CT

]T
∈ Rpn×n, (41)

N(j) :=



W (jτ + n− 1)+
n−2∑
i=0

CAn−2−iV (jτ + i)

W (jτ + n− 2)+
n−3∑
i=0

CAn−3−iV (jτ + i)

...
W (jτ)


. (42)

By the observability of (C, A), the matrix O (41) has full column
rank n and consequently a n× np pseudo-inverse O∗. Multiplying
(39) by O∗, we obtain

Y ′(j) := O∗Ỹ (j) = X(jτ)+W ′(j), (43)

whereW ′(j) := O∗N(j). Next looking at the dynamics of the plant
state from time jτ to (j+ 1)τ , observe that

X ′(j+ 1) := X((j+ 1)τ ) ≡ AτX ′(j)+ U ′(j)+ V ′(j), (44)

where

U ′(j) :=
n−1∑
i=0

AiBU((j+ 1)τ − 1− i), (45)

V ′(j) :=
τ−1∑
i=0

Aτ−1−iV (jτ + i). (46)

The controllability of (A, B) is equivalent to any desired value of
u′(j) ∈ Rn being implementable by suitable choice of inputs
{u(t)}(j+1)τ−1t=(j+1)τ−n in (45). Further noting that A is in diagonal form
≡ diag(λ1, . . . , λn), wemay pair the h-th components of (44), (43)
to obtain n virtual scalar plants

X ′h(j+ 1) = λ
τ
hX
′

h(j)+ U
′

h(j)+ V
′

h(j) ∈ R, (47)

Y ′h(j) = X
′

h(j)+Wh(j) ∈ R, (48)

with decoupled dynamics, outputs and control inputs. Further-
more the noise terms V ′h(j),W

′

h(j), being fixed linear functions
of {V (t),W (t)}(j+1)τt=jτ , have (2 + ε)-th moments that are uni-
formly bounded over j. As these virtual plants are in the form
(1) and satisfy assumptions A1, we may use the time-invariant,
finite-dimensional encoder-controller (FDEC) (5)–(22) on each
h-th plant, setting ν = τh ≥ 1, λ = λτh , b = c = 1. (Note that
although the parameters dV , dW are arbitrary, for improved perfor-
mance they should be of the sameorder as the root-mean (2+ε)-th
power of the respective noise terms V ′h(j),Wh(j).)
The protocol for allocating channel access to each virtual plant

encoder is essentially the same as in Nair and Evans (2004)

(sec. 5.2.2). In that article it was shown that in order to be able to
mean square stabilise the states of a stochastic LTI plant with some
causal, error-free encoder-controller, it is necessary and sufficient
for the average data rate to satisfy

R > H :=
n∑
h=1

max{log2 |λh|, 0}, (49)

where H is the intrinsic entropy rate of the plant. Pick any nominal
data rate R′ > H , select an integer µ ≥ max{2, 2R

′

} and divide up
the transmission phase [jτ + n, . . . , (j + 1)τ − n − 1] into n + 1
transmission slots, with the h-th slot having duration τh. Then+1-th
slot is idle, with nothing transmitted. During the h-th slot, where
h ≤ n, the h-th component of (47) with output (48) is encoded
by the FDEC above and transmitted as a τh-length codeword with
letters in a µ-ary alphabet. It can be shown that the choice of slot
durations

τh = blogµmax{ζ |λh|
τ , 0}c + 1, ∀h ∈ [1, . . . , n], (50)

(1) is feasible for large τ , i.e.
∑n
h=1 τh ≤ τ − 2n,

(2) has average data rate R =
∑n
h=1 τh log2 µ/τ ≤ R

′ for large τ ,
(3) satisfies µτh > ζ |λτh |.

Thus if we select the controller and observer gains g, ko for each
virtual plant to satisfy |λτh + g|, |λ

τ
h − k

o
| < 1 then Corollary 4,

Theorem 5 and Corollary 6 immediately yield the following result:

Theorem 7 (Stability and Convergence for MIMO Plants). Suppose
that the τ -periodically time-varying, finite-dimensional encoder-
controller (FDEC) of this section is applied to the multi-input, multi-
output stochastic plant (38).
Then for sufficiently small η > 0 and any initial maximum propor-

tional scaling error (30) F(0) ≤ η, all closed-loop state variables
are uniformly mean square bounded. Furthermore, the maximum
proportional scaling errors monotonically→ 0 almost surely with
time and the unnormalised errors between the encoder and controller
states→ 0mean absolutely.

Remark. Although the argument presented above only deals
explicitly with the the states at times t = jτ , the linear-time-
invariance of the plant can be used to establish mean-square
boundedness at all times t . The FDEC internal states of course only
change at times t = jτ .

7. Simulation results

In this section, we presentMatlab simulations that illustrate the
internal stability and asymptotic agreement results of Sections 4–5
for a noiseless digital channel. We then examine the effect
of transmitting the quantiser outputs over a binary symmetric
channel (BSC) with a non-zero bit error rate (BER).
We consider an unstable scalar plant (1), with parameters λ =

1.1, b = c = 1 and having independent Gaussian initial state,
process and observation noise with mean 0 and variance 1. We set
µ = 2, ν = 2 in the quantiser law (10) so that it hasµν = 4 levels,
yielding a data rate of 2 bits/sample. In the finite-dimensional
encoder-controller (FDEC) update rules (6) and (11)–(22), we set
the parameters g = −1.1 and ko = dW = dV = 1. We initialise
the encoder internal state (5) with the values X̂(0| − 1) = 0,
Xe(0) = 100, LeG(0) = 101, L

e
J (0) = L

e
H(0) = 1 and the controller

internal state (16) with X c(0) = 0, LcG(0) = L
c
J (0) = L

c
H(0) = 1.

Note the large initial errors Xe(0)− X c(0) = LeG(0)− L
c
G(0) = 100.

The simulations illustrated here were done over 100 time steps,
with the squared states and errors at each time averaged over 1000
samples.
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7.1. Noiseless digital channel

Graphs (1) and (2) in Fig. 3 show that the plant has been
successfully stabilised via a noiseless channel, with the FDEC
parameter η of (15) and (21) set to 0 and 0.1 respectively. The
average value of the squared plant state X(t)2 roughly settles to
around 100 in the former but to around 350 in the latter, with
larger transients as well. This suggests that the performance of the
system is highly affected by the parameter η. Indeed, since η serves
as anupper boundon theproportional scaling error F(t) (30)which
monotonically→ 0 a.s., η = 0may be optimal. A rigorous analysis
of this conjecture is left for future work.
Graphs (3) and (4) in Fig. 4 show that the difference between

LeG(t) and L
c
G(t) tends to zero in mean square and proportional

senses respectively. This supports the analysis in Section 5.

7.2. Binary symmetric channel (BSC)

Fig. 5 illustrates the effect on average squared plant stateswhen
the 4-valued quantiser index S(t) of (10) is transmitted as a 2-bit
symbol over a BSC with probability of bit error or BER Pe > 0. This
yields a probability of received symbol error of 1− (1−Pe)2 ≈ 2Pe.
The plant and FDEC parameters and initial states are otherwise all
the same as in Section 7.1 and we set η = 0.
Observe in graph (5) that when Pe = 0.01, the average squares

states still remain bounded over time despite bit errors (note: in
digital communications, 0.01 is typically regarded as a high BER).
We do not explicitly analyse the reasons for this here, but the
intuitive explanation is related to the fact that, from Section 5,
the difference between the FDEC encoder and controller states
decreases towards zero between successive bit errors. If the speed
of this decay is sufficiently fast compared to themean time interval
≈ 1/(2Pe) = 50 between successive symbol errors, then on
average the system has sufficient time to recover before the next
symbol error occurs. However, when Pe is increased from 0.01
to 0.045, graph (6) indicates that stability is lost; i.e. the mean
time between successive symbol errors, which is now ≈ 1/(2 ×
0.045) = 11.1, is too short to allow the encoder and controller to
adequately resynchronise their states.

Remark. More thorough analyses of stabilisability over erroneous
digital channels such as in Matveev and Savkin (2007a) and
Matveev and Savkin (2007b) provide necessary and sufficient
conditions that relate various information-theoretic notions of
channel capacity to the intrinsic entropy rate H (49) of the plant.
However, the sufficiency of these criteria was generally proven by
using long, randomly generated channel error correction codes. In
contrast, the scheme here is explicitly defined, finite-dimensional
and does not require any error correction coding. The reason for
this simplicity lies in the fact that each channel bit error results in
an incorrect control input, which feeds through the unstable, noisy
LTI plant to produce a statistically large output that a zooming-like
encoder can automatically recapture, if appropriately designed.

In connection with this, note that bit errors in digital point-
to-point channels often arise from a limited signal-to-noise ratio
(SNR) in the physical layer. It has been established that, if
the physical channel noise and plant noise are uncorrelated
and additive Gaussian, then mean square stability can be
achieved using linear analog transmitters and controllers, without
digital coding and at any SNR corresponding to a channel
capacity exceeding H (Braslavsky, Middleton, & Freudenberg,
2007; Freudenberg, Middleton, & Solo, 2006). The scheme
proposed here raises the question of whether finite-dimensional
schemesmay also be able to achieve stability at erroneous channel
information rates down to this infimum, when the transmission
format is constrained to be digital. A detailed investigation of this
question is left as future work.

Fig. 3. Mean square stability.

Fig. 4. Asymptotic agreement inmean-square andproportional almost-sure senses
— convergence to zero.

Fig. 5. Binary symmetric channel.
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Appendix A. Pseudo-norm properties

In addition to (26)–(27), the non-negative functional (25) has
the following useful properties:

(1) Positive homogeneity:

‖dX, dL‖∗ = d‖X, L‖∗, ∀d > 0. (A.1)

(2) Triangle inequality: ∀ random variables X1, X2 ∈ R, L1, L2 ≥ 0,

‖X1 + X2, L1 + L2‖∗ ≤ ‖X1, L1‖∗ + ‖X2, L2‖∗. (A.2)

These properties imply that ‖·, ·‖∗ is a pseudo-norm on the space
of random vectors in R× R≥0.3

Property 1 is trivial, while the proof of Property 2 is as follows.
Let f (x) :=

√
1+ x2+ε , ∀x ≥ 0, noting that ‖X, L‖2

∗
≡

E{L2f (|X |/L)2}. It is straightforward to establish that f is convex
and increasing, thus

(L1 + L2)f
(
|X1 + X2|
L1 + L2

)
≤ (L1 + L2)f

(
|X1| + |X2|
L1 + L2

)
= (L1 + L2)f

(
L1

L1 + L2

|X1|
L1
+

L2
L1 + L2

|X2|
L2

)
≤ (L1 + L2)

[
L1

L1 + L2
f
(
|X1|
L1

)
+

L2
L1 + L2

f
(
|X2|
L2

)]
= L1f

(
|X1|
L1

)
+ L2f

(
|X2|
L2

)
.

Squaring both sides and taking expectations,

‖X1 + X2, L1 + L2‖2∗

≤ ‖X1, L1‖2∗ + ‖X2, L2‖
2
∗
+ 2E

{
L1f

(
|X1|
L1

)
L2f

(
|X2|
L2

)}
≤ ‖X1, L1‖2∗ + ‖X2, L2‖

2
∗

+

√√√√E{L21f ( |X1|L1
)2}√√√√E{L22f ( |X2|L2

)2}
≡ (‖X1, L1‖∗ + ‖X2, L2‖∗)2 , (A.3)

where (A.3) follows from the Cauchy–Schwarz inequality. Taking
square roots then yields (A.2). �

Appendix B. Proof of Lemma 1 (Monotonic decrease of maxi-
mum proportional scaling error)

Subtracting LeG(t + 1) (13) from L
c
G(t + 1) (19) and using the

definition of ZG(t) (28), we obtain

ZG(t + 1) = |λ|ZG(t)+ |koc|ZJ(t)

= |λ|LeG(t)
ZG(t)
LeG(t)

+ |koc|LeJ (t)
ZJ(t)
LeJ (t)

.

3 To be a norm, we would also need ‖X, L‖∗ = 0 ⇔ X, L = 0 a.s.. The bound
(26) establishes the forward implication, but the reverse is false: if we constrain
L = |X |1+2/ε , then ‖X, L‖∗ ≥ 1 even if X = L = 0 a.s.

Applying moduli, the triangle inequality and the definition of F(t)
(30), we obtain

|ZG(t + 1)| ≤ [|λ|LeG(t)+ |k
oc|LeJ (t)]F(t)

≡ [LeG(t + 1)− |k
o
|dW ]F(t)

⇔
|ZG(t + 1)|
LeG(t + 1)

≤

(
1−

|ko|dW
LeG(t + 1)

)
F(t) < F(t). (B.1)

Similarly, (14)–(15), (20)–(21) and (29)–(30) yield

|ZJ(t + 1)|
LeJ (t + 1)

≤

(
1−

dV + |ko|dW
LeJ (t + 1)

)
F(t) < F(t), (B.2)

|ZH(t + 1)|
LeH(t + 1)

≤

(
1−

η|ko|dW
LeH(t + 1)

)
F(t) < F(t). (B.3)

Taking themaximumof (B.1)–(B.3) and using definition (30) again,
we see that

F(t + 1) < F(t), (B.4)

i.e. {F(t)} is a decreasing sequence. As it is bounded below by 0, it
must therefore converge monotonically to a limit F∗ ≥ 0, for each
realisation of noise and initial state. �

Appendix C. Proof of Lemma 2 (recursive bound on error
pseudo-norms)

Observe that G(t+1) (31) is the error between E(t) := λG(t)+
koJ(t)−koW (t) and its quantised value. Applying the pseudo-norm
to it and the corresponding scaling factor LeG(t+1) (13), the bound
(27) yields

‖G(t + 1), LeG(t + 1)‖∗

=

∥∥∥∥E(t)− Le(t)q( E(t)Le(t)

)
, Le(t)κ(S(t))

∥∥∥∥
∗

(27)
≤

ζ

µν
‖E(t), Le(t)‖∗

(A.2), (A.1)
≤

ζ

µν

(
|λ|‖G(t), LeG(t)‖∗ + |k

oc|‖J(t), LeJ (t)‖∗

+ |ko|‖W (t), dW‖∗
)
. (C.1)

Similarly, applying ‖·, ·‖∗ to (32), (14) gives

‖J(t + 1), LeJ (t + 1)‖∗
(A.2), (A.1)
≤ |λ− koc|‖J(t), LeJ (t)‖∗

+ |bg|‖H(t), LeH(t)‖∗ + ‖V (t), dV‖∗ + |k
o
|‖W (t), dW‖∗. (C.2)

Now, by Lemma 1,

η ≥ |ZG(t)|/LeG(t), |ZJ(t)|/L
e
J (t), ∀t ≥ 0.

⇒ |Lc(t)− Le(t)| =
∣∣|λ|ZG(t)+ |koc|ZJ(t)∣∣

≤ η
(
|λ|LeG(t)+ |k

oc|LeJ (t)
)
< ηLe(t).

Taking the modulus of (33) and applying this, we obtain

|H(t + 1)| < |λ+ bg‖H(t)| + ηLe(t)
∣∣∣∣q( E(t)Le(t)

)∣∣∣∣
< |λ+ bg‖H(t)| + η(|N(t)| + |E(t)|), (C.3)

where N(t) is the quantisation error

N(t) := Le(t)q
(
E(t)
Le(t)

)
− E(t).
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Applying the pseudo-norm to (C.3) and LeH(t) (15) and noting that
‖·, ·‖∗ is increasing in the 1st argument modulus,

‖H(t + 1), LeH(t + 1)‖∗
(A.2), (A.1)
≤ |λ+ bg|‖H(t), LeH(t)‖∗

+ η‖N(t), Le(t)κ(t)‖∗ + η‖E(t), Le(t)‖∗
(27)
≤ |λ+ bg|‖H(t), LeH(t)‖∗ + η

(
ζ

µν
+ 1

)
‖E(t), Le(t)‖∗

(A.2)
≤ |λ+ bg|‖H(t), LeH(t)‖∗ + η

(
ζ

µν
+ 1

) (
|λ|‖G(t), LeG(t)‖∗

+ |koc|‖J(t), LeJ (t)‖∗ + |k
o
|‖W (t), dW‖∗

)
. (C.4)

Let w̄, v̄ < ∞ be upper bounds on ‖W (t), dW‖∗, ‖V (t), dV‖∗
respectively, noting that these pseudo-norms are uniformly
bounded since W (t), V (t) are uniformly bounded in (2 + ε)-th
moment (assumptions A1). Combining (C.1), (C.2) and (C.4), we
obtain the recursion (34), where

χ :=
[
ζ |ko|µ−νw̄, v̄ + |ko|w̄, η(1+ ζµ−ν)|ko|w̄

]T
. � (C.5)

Appendix D. Proof of Theorem 5 (Proportional scaling errors
→ 0 a.s.)

The proof is by contradiction. By Lemma 1, F(t) decreases
monotonically to a limiting random variable F∗ ≥ 0. Suppose that
this is not a.s. 0, i.e. that Pr{F∗ > 0} > 0. Taking the maximum of
(B.1)–(B.3),

F(t + 1) ≤ max

{
1−

|ko|dW
LeG(t + 1)

, 1−
dV + |ko|dW
LeJ (t + 1)

,

1−
η|ko|dW
LeH(t + 1)

}
F(t).

Taking inferior limits,

F∗ ≤ lim inf
t→∞

max

{
1−

|ko|dW
LeG(t + 1)

, 1−
dV + |ko|dW
LeJ (t + 1)

,

1−
η|ko|dW
LeH(t + 1)

}
lim sup
t→∞

F(t)︸ ︷︷ ︸
=F∗

a.s..

⇒ 1 ≤ lim inf
t→∞

max

{
1−

|ko|dW
LeG(t + 1)

, 1−
dV + |ko|dW
LeJ (t + 1)

,

1−
η|ko|dW
LeH(t + 1)

}
(D.1)

= 1− lim sup
t→∞

min

{
|ko|dW
LeG(t + 1)

,
dV + |ko|dW
LeJ (t + 1)

,

η|ko|dW
LeH(t + 1)

}
, w.p. > 0, (D.2)

where (D.1) is obtained by dividing through by F∗, which> 0 with
probability (w.p.)> 0. As the superior limit in (D.2) is nonnegative,
it must then= 0, w.p.> 0. Defining

L(t) := max
{
LeG(t)
|ko|dW

,
LeJ (t)

dV + |ko|dW
,
LeH(t)
η|ko|dW

}
, (D.3)

this implies lim inft L(t) = ∞w.p.>0. That is, ∃φ > 0 s.t.
φ < Pr{lim inf

t→∞
L(t) = ∞} = Pr{sup

t≥0
inf
s≥t
L(s) = ∞}

= Pr
{
∩n≥1 ∪t≥0 ∩s≥t An,s

}
≤ Pr

{
∪t≥0 ∩s≥t An,s

}
= sup
t≥0
Pr
{
∩s≥t An,s

}
, ∀n ≥ 1, (D.4)

whereAn,s denotes the event {L(s) ≥ n} andwhere the last equality
is due to the fact that ∩s≥t An,s expands with t . Thus ∀n ≥ 1, ∃tn
sufficiently large that

φ < Pr{∩s≥tn An,s} ≤ Pr{An,tn} = Pr{L(tn) > n}. (D.5)

However, by the mean square boundedness of the scaling factors,
∃θ <∞ s.t. ∀t ≥ 0,

θ ≥ E

{∣∣∣∣ LeG(t)|ko|dW

∣∣∣∣2 + ∣∣∣∣ LeJ (t)

dV + |ko|dW

∣∣∣∣2 + ∣∣∣∣ LeH(t)η|ko|dW

∣∣∣∣2
}

(D.3)
≥ E{L(t)2}.

By the Chebychev inequality Pr{L(t) > n} ≤ θn−2, ∀n ≥ 1, t ≥ 0.
Thus ∀n ≥

√
2c/φ, t ≥ 0, we have Pr{L(t) > n} ≤ φ/2,

contradicting (D.5). �

Appendix E. Proof of Corollary 6 (Asymptotic mean absolute
agreement)

Let supt≥0 E{Lex(t)
2
} =: θ <∞, where the subscript ‘x’ denotes

either ‘G’, ‘J ’ or ‘H ’. We have

E{|Zx(t)|} = E
{
|Zx(t)|
Lex(t)

Lex(t)
}
(30)
≤ E{F(t)Lex(t)}

≤

√
E{F(t)2}E{Lex(t)2} ≤

√
θE{F(t)2},

where we have used the Cauchy–Schwarz inequality (p. 276) in
the last line. As η2 ≥ F(t)2 → 0 a.s., Lebesgue’s dominated
convergence theorem guarantees that the RHS → 0. Hence
E{|Zx(t)|} → 0, ∀ ‘x’ ∈ {‘G’, ‘J ’,‘H ’}.
Writing Le(t) − Lc(t) ≡ λZG(t) + kocZJ(t) in (33), applying

moduli and taking expectations,

E{|H(t + 1)|} ≤ |λ+ bg|E{|H(t)|}
+
(
|λ|E{|ZG(t)|} + |koc|E{|ZJ(t)|}

)
q̄,

where q̄ is an upper bound on |q(·)|. As |λ + bg| < 1 and
E{|ZG(t)|}, E{|ZJ(t)|} → 0, it follows that E{|H(t)|} → 0. �
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